Christoph Kühn WS 2008/09

Übung zur Einführung in die Stochastische Finanzmathematik

Blatt 6

Abgabe Mittwoch, 28.1.2009 vor der Vorlesung

Aufgabe 21 Betrachte auf einem endlichen filtrierten Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, P, (\mathcal{F}_t)_{t=0,1,\dots,T})$ mit $\mathcal{F}_0 = \{\emptyset, \Omega\}$ einen arbitragefreien Markt mit Preisprozessen $S = (1, S_t^1)_{t=0,1,\dots,T}$. Sei H eine replizierbare Auszahlung mit Hedging-Strategie $(\varphi^1)_{t=1,\dots,T}$ (reellwertiger, vorhersehbarer Prozess), d.h. $H = v_0 + \varphi^1 \cdot S_T^1$ für ein $v_0 \in \mathbb{R}$. Der arbitragefreie Preisprozess $(S_t^2)_{t=0,1,\dots,T}$ für H ist dann gegeben durch $S_t^2 = E_Q(H \mid \mathcal{F}_t), \ t=0,1,\dots,T$, für ein äquivalentes Martingalmaß Q.

Zeigen Sie: wenn $Cov_Q(\Delta S_t^1, \Delta S_t^1 \mid \mathcal{F}_{t-1}) > 0$, P-f.s., t = 0, 1, ..., T, dann ist die Replikationsstrategie P-f.s. eindeutig und es gilt

$$\varphi_t^1 = \frac{\operatorname{Cov}_Q(\Delta S_t^2, \Delta S_t^1 \mid \mathcal{F}_{t-1})}{\operatorname{Cov}_Q(\Delta S_t^1, \Delta S_t^1 \mid \mathcal{F}_{t-1})}, \quad t = 1, \dots, T.$$

Dabei ist für eine Teil- σ -Algebra $\mathcal G$ die bedingte Kovarianz zweier Zufallsvariablen X und Y, "gegeben die Information $\mathcal G$ " definiert durch

$$Cov_Q(X, Y \mid \mathcal{G}) = E_Q[(X - E_Q(X \mid \mathcal{G}))(Y - E_Q(Y \mid \mathcal{G})) \mid \mathcal{G}].$$

Aufgabe 22 Sei $S = (1, S_t^1)_{t=0,1,\dots,T}$ mit $S_t^1 = \prod_{s=1}^t (1 + A_s)$, wobei $(A_s)_{s=1,\dots,T}$ i.i.d. mit $P(A_s > -1) = 1$.

- (a) Geben Sie eine formale Beschreibung für eine selbstfinanzierende Strategie $\varphi = (\varphi^0, \varphi^1)_{t=1,\dots,T}$ an, welche die im folgenden verbal beschriebenen Strategien realisiert. Das Anfangsvermögen des Investors sei dabei jeweils 1.
 - (i) Es wird zu jedem Zeitpunkt die Hälfte des aktuellen Vermögens in Anlage S^1 investiert.
 - (ii) Es wird zu jedem Zeitpunkt der Geldbetrag 1 in Anlage S^1 investiert.
- (b) In welchen der beiden Fälle ist der Vermögensprozess $V(\varphi)$ ein positiver stochastischer Prozess ?
- (c) Berechne Erwartungswert und Varianz des jeweiligen Endvermögens $V_T(\varphi)$, wenn $1+A_s$ i.i.d. lognormalverteilt mit Parametern $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}_+ \setminus \{0\}$ sind (vgl. Aufgabe 17 auf Blatt 5).

Bitte wenden

Aufgabe 23 Man beweise oder widerlege die folgende Aussage. In einem arbitragefreien Marktmodell $(S_t^0, S_t^1, \dots, S_t^d)_{t=0,1,\dots,T}$ mit $\mathcal{F}_0 = \{\emptyset, \Omega\}$ (Startpreise sind deterministisch) ist jeder Claim der Form

$$H = \sum_{t=1}^{T} \sum_{i=1}^{d} \beta_t^i S_t^i,$$

wobei $(\beta_t^i)_{t=1,\dots,T}$, $i=1,\dots,d$, vorhersehbare Prozesse sind, replizierbar.

Aufgabe 24

(a) Seien Y_1, \ldots, Y_T i.i.d. Zufallsvariablen mit $E(Y_1) = 0$ und $Var(Y_1) = 1$. Zeigen Sie, dass der Prozess $X = (X_t)_{t=0,1,\ldots,T}$ definiert durch $X_0 = 0$ und

$$X_t = \sum_{j=1}^t (Y_j)^2 - t, \quad t = 1, \dots, T$$

ein Martingal bzgl. der von X erzeugten Filtration ist.

(b) Sei M ein quadratintegrierbares Martingal (d.h. M ist ein Martingal und $E(M_t^2) < \infty$ für t = 0, 1, ..., T). Zeigen Sie, dass M^2 ein Submartingal ist.

Aufgabe 25 [**Zusatzaufgabe**] Sie nehmen an einem Roulettspiel teil, bei dem in jeder Runde Rot und Schwarz jeweils mit Wahrscheinlichkeit $\frac{1}{2}$ fallen. Sie dürfen potentiell unendlich lange spielen, d.h. das Spielkasino schließt nicht. Geben Sie eine Spielstrategie an, bei der Sie mit Wahrscheinlichkeit 1 nach endlicher Zeit mit mindestens einer Geldeinheit das Spielkasino verlassen. Formulieren Sie die Lösung finanzmathematisch: $(S_t)_{t=0,1,2,\dots}$ ist eine Standard-Irrfahrt. Gesucht ist ein vorhersehbarer Prozess $(\varphi_t)_{t=1,2,\dots}$ und eine N-wertige Stoppzeit τ mit φ • $S_{\tau} := \sum_{t=1}^{\tau} \varphi_t \Delta S_t \geq 1$, P-f.s. (der Zeithorizont T ist hier unendlich).

Allgemeiner Hinweis: Für jede Aufgabe gibt es 4 Punkte. Die Punkte aus Aufgabe 25 werden als Zusatzpunkte verrechnet.