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Abstract

The common definition of a random variable as a measurable function
works well ‘in practice’, but has conceptual shortcomings, as was pointed
out by several authors. Here we treat random variables not as derived
quantities but as mathematical objects, whose basic properties are given
by intuitive axioms. This requires that their target spaces fulfil a mini-
mal regularity condition saying that the diagonal in the product space is
measurable. From the axioms we deduce the basic properties of random
variables and events.
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1 Introduction

In this paper we define the concept of a stochastic ensemble. It is our intention
thereby to give an intuitive axiomatic approach to the concept of a random vari-
able. The primary ingredient is a sufficiently rich collection of random variables
(with ‘good’ target spaces). The set of observable events will be derived from
it.

Among the notions of probability it is the random variable, which in our
view constitutes the fundamental object of modern probability theory. Albeit
in the history of mathematical probability events came first, random variables
are closer to the roots of understanding nondeterministic phenomena. Nowa-
days events typically refer to random variables and are no longer studied for
their own sake, and for distributions the situation ist not much different. More-
over, random variables turn out to be flexible mathematical objects. They can
be handled in other ways than events or distributions (think of couplings), and
these ways often conform to intuition. ‘Probabilistic’, ‘pathwise’ methods gain
importance and combinatorial constructions with random variables can substi-
tute (or nicely prepare) analytic methods. It was a common believe that first of
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all the distributions of random variables matter in probability, but this believe
is outdated.

Today it is customary to adapt random variables to a context from measure
theory. Yet the feeling has persisted that random variables are objects in their
own right. This was manifest, when measure theory took over in probability:
According to J. Doob (interviewed by Snell [9]) “it was a shock for probabilists
to realize that a function is glorified into a random variable as soon as its domain
is assigned a probability distribution with respect to which the function is mea-
surable.” Later the experts insisted that it is the idea of random variables, which
conforms to intuition. Legendary is L. Breiman’s [2] statement: “Probability
theory has a right and a left hand. On the right is the rigorous foundational
work using the tools of measure theory. The left hand ‘thinks probabilistically,’
reduces problems to gambling situations, coin-tossing, and motions of a physical
particle.” In applications of probability the concept of a random variable never
lost its appeal. We may quote D. Mumford [8]: “There are two approaches to
developing the basic theory of probability. One is to use wherever possible the
reduction to measure theory, eliminating the probabilistical language . . . The
other is to put the concept of ‘random variable’ on center stage and work with
manipulations of random variables wherever possible”. And, “for my part, I
find the second way . . . infinitely clearer”.

Example. To illustrate this assertion let us consider different proofs of the
central limit theorem saying that (X1 + . . .+Xn)/

√
n is asymptotically normal

for iid random variables X1, X2, . . . with mean 0 and variance 1. There is
the established analytic approach via characteristic functions. In contrast let
us recall a coupling method taken from [2], which shortly speaking consists
in replacing X1, . . . , Xn one after the other by independent standard normal
random variables Y1, . . . , Yn. In more detail this looks as follows: Let f : R → R
be thrice differentiable, bounded and with bounded derivatives. Then it is
sufficient to show that

E
[
f
(X1 + · · ·+Xn√

n

)
− f

(Y1 + · · ·+ Yn√
n

)]
converges to zero. The integrand may be expanded into

n∑
i=1

[
f
( Zi√

n

)
− f

(Zi−1√
n

)]
with Zi := X1 + · · ·+Xi + Yi+1 + · · ·+ Yn. By means of two Taylor expansions
around Ui := X1 + · · ·+Xi−1 + Yi+1 + · · ·+ Yn the summands turn into

Xi − Yi√
n

f ′(Ui) +
X2

i − Y 2
i

2n
f ′′(Ui) +OP (n−3/2)

Taking expectations the first two terms vanish because of independence, and a
closer look at the remainder gives the assertion (see [2], page 168). 2
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From an architectual point of view these considerations and statements suggest
to try and start from random variables in the presentation of probability theory
and therewith to bring intuition and methods closer together – rather than
to gain random variables as derived quantities in the accustomed measure-
theoretic manner. We like to show that this can be accomplished without
much technical effort. For this purpose we may leave aside distributions in this
paper.

Let us comment on the difference of our approach to the customary one choosing
a certain σ-field E on some basic set Ω as a starting point and then to identify
events and random variables with measurable sets and measurable functions. In
our view this is a set-theoretic model of the probabilistic notions.

To explain this first by analogy let us recall, how natural numbers are treated
in mathematics. There are two ways: Either one starts from the well-known
Peano axioms. Then the set of natural numbers is the object of study, and
a natural number is nothing more than an element of this structured set. Or
natural numbers are introduced by a set-theoretic construction, e.g. 0 := ∅, 1 :=
{0}, . . . , n+ 1 := n ∪ {n}, . . . (see [7]). This setting exhibits aspects, which are
completely irrelevant for natural numbers (such as n ∈ n+1 and n ⊂ n+1) and
which stress that we are dealing with a model of the natural numbers. Thus,
if one considers different models, they will not be similar (isomorphic) in any
respect.

Analoguous observations can be made in our context, if events and random
variables are represented by a measure space (Ω, E) and associated measurable
functions. Note the following: There are the subsets of Ω not belonging to E ,
which are totally irrelevant. To some extent this is also true for the elements ω
of Ω (as also Mumford [8] pointed out; already Caratheodory considered inte-
gration on spaces without points in his theory of soma [3]). The ‘small omegas’
do not show up in any relevant result of probability theory, and one could do
without them, if they were not needed to define measurable functions. Next the
notion of a random variable is ambiguous: There are random variables and a.s.
defined random variables, represented by measurable functions and equivalence
classes of measurable functions. This distinction, though unavoidable in the
traditional setting, is somewhat annoying. Finally note that probabilists leave
aside the question of isomorphy of measurable spaces.

All these observations indicate that measurable spaces and mappings indeed
make up a model of events and random variables. This is not to say that
such models should be avoided, but one should not overlook that they might
mislead. Aspects like the construction of non-Borel-sets are of no relevance in
probability and may detract beginners. Also one should be cautious in giving
the elements of Ω some undue relevance (‘state of the world’), which may create
misconceptions.

Example. This example of possible misconception is taken from the textbook
[1] (Example 4.6 and 33.11). Let Ω = [0, 1], endowed with the Borel-σ-field
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and Lebesgue-measure λ. Let F be the sub-σ-field of sets B with λ(B) = 0
or 1. Then F presents an observer, who lacks information. It is mistaken to
argue that F presents full information, because it contains all one point sets
such that the observer can recognize, which event {ω} takes place and which
‘state’ ω is valid. Therefore for any Borel-set E ⊂ Ω the conditional probability
λ(E|F) ist λ(E) a.s., and in general not 1E a.s. 2

The eminent geometer H. Coxeter pinpoints such delusion due to models in
stating: “When using models, it is desirable to have two rather than one, so as to
avoid the temptation to give either of them undue prominence. Our . . . reasoning
should all depend on the axioms. The models, having served their purpose
of establishing relative consistency, are no more essential than diagrams” (see
section 16.2 in [4]). Coxeter has the circle and halfplane models of hyperbolic
geometry in mind, but certainly his remark applies more generally.

An axiomatic concept of random variables should avoid the asserted flaws.
The reader may judge our approach from this viewpoint. This paper owes a lot
to discussions with Hermann Dinges, who put forward related ideas already in
[5] (jointly with H. Rost). For further discussion we refer to H. Dinges [6] and
D. Mumford [8].

The paper is organized as follows. In section 2 we have a look on those
properties of events and random variables irrespective of a measure-theoretic
representation (this section may be skipped). In section 3 we discuss the class
of measurable spaces, which are suitable to serve as target spaces of random
variables. Section 4 contains the axioms for general systems of random variables,
which we call stochastic ensembles. In section 5 we derive events and deduce
their properties from these axioms. In section 6 we discuss equality and a.s.
equality of random variables. In section 7 we address convergence of random
variables in order to exemplify how to work within our framework of axioms.

2 Events and random variables – an outline

Random variables and events rely on each other. Random variables can be
examined from the perspective of events, and vice versa. In this section we
describe this interplay in an non-systematic manner and detached from the
measure-theoretic model, in order to introduce into our subject.

The field E of events is a σ-complete Boolean lattice. In particular:

• Each event E possesses a complementary event Ec.

• For any finite or infinite sequence E1, E2, . . . of events there exists its union⋃
nEn and its intersection

⋂
nEn.

• There are the sure and the impossible events Esure and Eimp.

Also E1 ⊂ E2, iff E1 ∩ E2 = E1. Since events are no longer considered as
subsets of some space, unions and intersections have to be interpreted here in
the lattice-theoretic manner.
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A random variable X first of all has a target space S equipped with a σ-field
B. Intuitively S is the set, where X may take its values. Collections of random
variables obey the following simple rules:

• To each random variable X with target space S and to each measurable
ϕ : S → S′ a random variable with target space S′ is uniquely associated,
denoted by ϕ(X).

• To each sequence X1, X2, . . . of random variables with target spaces
S1, S2, . . . a random variable with target space S1 × S2 × · · · equipped
with the product-σ-field is uniquely associated, denoted by (X1, X2, . . .).

The corresponding calculation rules are obvious, we come back to them. We
point out that not every measurable space is suitable as a target space – a
minimal condition will be given in the next section. Uncountable products
⊗i∈I(Si,Bi) of measurable spaces are in general no admissible target spaces.
This conforms to the fact that in probability an uncountable family of random
variables (Xi)i∈I is at most provisionally considered as a single random variable
with values in the product space, before proceeding to a better suited target
space.

The connection between random variables and events is established by the re-
mark that to any random variable X and to any measurable subset B of its
target space S an event

{X ∈ B}

is uniquely associated. The events {X ∈ B} uniquely determine X, where B
runs through the measurable subsets of S. The calculation rules are{

X ∈
⋃
n

Bn

}
=

⋃
n

{X ∈ Bn} ,
{
X ∈

⋂
n

Bn

}
=

⋂
n

{X ∈ Bn} ,

{X ∈ Bc} = {X ∈ B}c , {X ∈ S} = Esure , {X ∈ ∅} = Eimp ,

where B,B1, B2, . . . are measurable subsets of the target space of X. If these
properties hold, the mapping B 7→ {X ∈ B} is called a σ-homomorphism.
Moreover

{ϕ(X) ∈ B′} = {X ∈ B} , where B = ϕ−1(B′)

{(X1, X2, . . .) ∈ B1 ×B2 × · · · } =
⋂
n

{Xn ∈ Bn} .

From the perspective of events the connection to random variables is as follows:
For any event E there is a random variable IE with values in {0, 1}, the indicator
variable of E, fulfilling

{IE = 1} = E , {IE = 0} = Ec .
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For any infinite sequence E1, E2, . . . of disjoint events there is a random variable
N = min{n : En occurs} with values in {1, 2, . . . ,∞} such that

{N = n} = En , {N = ∞} =
⋂
n

Ec
n .

For any infinite sequence E1, E2, . . . of events (disjoint or not) there is a random
variable X and measurable subsets B1, B2, . . . of its target space such that

{X ∈ Bn} = En

for all n (see section 5).

This is about all, what mathematically can be stated about events and random
variables. A systematic treatment requires an axiomatic approach. There are
two possibilities, namely to start from events or from random variables.

Either the starting point is the field of events, which is assumed to be a σ-
complete Boolean lattice E . Then a random variable X with target space (S,B)
is nothing else but a σ-homomorphism from B to E . It is convenient to denote
it as B 7→ {X ∈ B} again. In this approach some technical efforts are required
to show that any sequence X1, X2, . . . of random variables may be combined to
a single random variable (X1, X2, . . .).

Starting from random variables instead is closer to intuition to our taste.
Also it circumvents the technical efforts just mentioned. This approach will be
put forward in the following sections.

3 Spaces with denumerable separation

Not every measurable space qualifies as a possible target space. We require that
there exists a denumerable system of measurable sets separating points.

Definition. A measurable space (S,B) is called measurable space with denu-
merable separation (mSdS), if there is a denumerable C ⊂ B such that for any
pair x 6= y of elements in S there is a C ∈ C such that x ∈ C and y 6∈ C.

Examples.

1. Any separable metric space together with its Borel-σ-algebra is a mSdS.
This includes the case of denumerable S and in fact any relevant target
space of random variables considered in probability.

2. If (S1,B1), (S2,B2), . . . is a sequence of mSdS, then also the product space
⊗n(Sn,Bn) is a mSdS. Indeed, if C1, C2, . . . are the separating systems,
then

C :=
⋃
n

{S1 × · · · × Sn−1 × Cn × Sn+1 × · · · : Cn ∈ Cn}

is denumerable and separating in the product space.
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3. An uncountable product of measurable spaces is no mSdS (up to trivial
cases). The reason is that these product-σ-field does not contain the one
point sets (see below). 2

A mSdS (S,B) has two important properties. Firstly one point subsets {x} are
measurable, since

{x} =
⋂

C∈C , x∈C

C

for all x ∈ S. Secondly the ‘diagonal’

D := {(x, y) ∈ S2 : x = y}

is measurable in the product space (S2,B2), since

D =
⋂

C∈C
C × C ∪ Cc × Cc . (1)

These properties are crucial for target spaces of random variables. Remarkably
the second one is characteristic for mSdS.

Proposition 1. A measurable space (S,B) is mSdS, if and only if D ∈ B2.

Proof. It remains to prove that D ∈ B2 implies the existence of a denumerable
separating system C. Let

F :=
⋃
C
σ(C)⊗ σ(C) ,

where σ(C) is the σ-field generated by C and the union is taken over all denumer-
able C ⊂ B. F is a sub-σ-field of B⊗B containing all B1×B2 with B1, B2 ∈ B,
thus

B ⊗ B =
⋃
C
σ(C)⊗ σ(C) .

By assumption it follows that D ∈ σ(C) ⊗ σ(C) for some denumerable C ⊂ B.
We show that C ∪ {Cc : C ∈ C} is a separating system. Let x, y ∈ S, x 6= y.
Then D does not belong to the σ-field

G := {B ∈ σ(C)⊗ σ(C) : {(x, x), (y, x)} ⊂ B or {(x, x), (y, x)} ⊂ Bc} .

It follows G 6= σ(C)⊗σ(C), thus there are B1, B2 ∈ σ(C) such that B1×B2 /∈ G.
Thus B1 contains x or y, but not both, and consequently is not an element of
the σ-field

H := {B ∈ σ(C) : {x, y} ⊂ B or {x, y} ⊂ Bc} .
Thus H 6= σ(C), therefore there is a C ∈ C such that x or y are elements of C,
but not both. This finishes the proof. 2

The property of denumerable separation proves useful also in the study of σ-
homomorphisms between measurable spaces.
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Proposition 2. Let (S,B) be a mSdS, let (Ω, E) be a measurable space and let
h : B → E be a σ-homomorphism. Then there is a unique measurable function
η : Ω → S such that η−1(B) = h(B) for all B ∈ B.

Proof. First we prove that h is not only a σ-homomorphism but a τ -
homomorphism, that is

h(B) =
⋃

x∈B

h({x}) (2)

for all B ∈ B. For the proof let {C1, C2, . . .} be a separating system of B.
Because h is a σ-homomorphism,

h(B) =
⋂
n

h(B ∩ Cn) ∪ h(B ∩ Cc
n) .

Since we consider sets here, this expression may be further transformed by
general distributivity: Denoting C+

n := Cn and C−n := Cc
n

h(B) =
⋃
χ

⋂
n

h(B ∩ Cχ(n)
n ) =

⋃
χ

h
(
B ∩

⋂
n

Cχ(n)
n

)
,

where the union is taken over all mappings χ : N → {+,−}. Since {C1, C2, . . .}
is a separating system,

⋂
n C

χ(n)
n contains at most one element, and for each

x ∈ S there is exactly one χ such that {x} =
⋂

n C
χ(n)
n . Therefore (2) follows.

In particular Ω =
⋃

x∈S h({x}). This enables us to define η by means of

η(ω) = x :⇔ ω ∈ h({x}) ,

that is η−1({x}) = h({x}). From (2)

h(B) =
⋃

x∈B

η−1({x}) = η−1(B) .

In particular η is measurable. 2

4 The axioms for random variables

In this section we introduce the concept of a stochastic ensemble RS , S ∈ T .
We require the following properties:

T is a collection of elements, which we call target spaces. They are assumed
to be measurable spaces (S,B) with denumerable separation. Since in concrete
cases it is always clear, which σ-field B is used within S, we often take the
liberty to call S the target space and to suppress B.

RS is a set for each S ∈ T . Its elements are called random variables, more
precisely random variables with target space S. For X ∈ RS we also say “X
takes values in S” and write

X y S .
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X,Y y S means X,Y ∈ RS .
Four axioms are needed to make this concept work. The first two assure that

stochastic ensembles are sufficiently rich. (Of course products of target spaces
are always endowed with the product-σ-field.)

Axiom 1. {0, 1}n ∈ T for n = 1, 2, . . . ,∞. Moreover, if S1, . . . , Sn ∈ T , then
also S1 × · · · × Sn ∈ T .

This axiom contains the minimal assumptions needed for our purposes. In
view of Axiom 3 below one might prefer to require that also countably infinite
products of target spaces always belong to T . This is a matter of taste – then
T will be enlarged dramatically.

Axiom 2. There are S ∈ T and X,Y y S such that X 6= Y .

The other two axioms describe, how to build new random variables from given
ones. The next axiom states that random variables transform like ordinary
variables.

Axiom 3. To each random variable X y S and to each measurable mapping
ϕ : S → S′ with S′ ∈ T a random variable X ′ y S′ is uniquely associated
denoted X ′ = ϕ(X). These random variables fulfil

id(X) = X

and
(ψ ◦ ϕ)(X) = ψ(ϕ(X)) ,

whenever such expressions may be formed.

In the next axiom πi : S1 × S2 × · · · → Si denotes the projection mapping to
the i-th coordinate,

πi(x1, x2, . . .) := xi .

πi is measurable.

Axiom 4. Let S1, S2, . . . be a finite or infinite sequence of target spaces such
that also S1 × S2 × . . . belongs to T . Then to any X1 y S1, X2 y S2, . . . a
random variable X y S1 × S2 × · · · is uniquely associated characterized by the
property

πi(X) = Xi

for all i. It is denoted X = (X1, X2, . . .) and called the product variable of
X1, X2, . . ..
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Axiom 3 and 4 can be summarized as follows: If X1 y S1, X2 y S2, . . . and if
ϕ : S1 × S2× → S is measurable, then we may form the random variable

ϕ(X1, X2, . . .) := φ(X)

with X = (X1, X2, . . .), provided the product space belongs to T . Also

ψ
(
ϕ1(X1, X2, . . .), ϕ2(X1, X2, . . .), . . .

)
=

(
ψ ◦ (ϕ1, ϕ2, . . .)

)
(X1, X2, . . .) (3)

for suitable measurable mappings ψ,ϕ1, ϕ2, . . . Indeed: From Axiom 3 we obtain
πi

(
(ϕ1, ϕ2, . . .)(X)

)
= ϕi(X), thus (ϕ1, ϕ2, . . .)(X) = (ϕ1(X), ϕ2(X), . . .) from

Axiom 4 and (3) follows from Axiom 3.

Examples.

1. Real-valued random variables. As to a concrete example let us
look at real-valued random variables. Then T has to contain Rd for
d = 1, 2, . . .. The ordinary operations within R transfer to random vari-
ables without difficulties. For example, for X1, X2 y R we may define
X1+X2 := ϕ(X1, X2) using the measurable mapping ϕ(x1, x2) := x1+x2.
The calculation rules transfer from the real numbers to random variables
by means of (3), f.e.

(X1 +X2) +X3 =
(
ϕ ◦ (ϕ ◦ (π1, π2), π3)

)
(X1, X2, X3)

=
(
ϕ ◦ (π1, ϕ ◦ (π2, π3))

)
(X1, X2, X3) = X1 + (X2 +X3)

Other operations as |X| and max(X1, X2) are introduced in much the
same way.

2. Random variables with constant value. Each element c of some
target space S may be considered as random variable: Let ϕ′ : S′ → S
be any mapping taking only the value c and choose any random variable
X ′ y S′. ϕ′ is measurable. It is easy to show that ϕ′(X ′) does only
depent on c: If ϕ′′(X ′′) is another choice, then by Axiom 3 and 4 ϕ′(X ′) =
(ϕ′◦π′)(X ′, X ′′) = (ϕ′′◦π′′)(X ′, X ′′) = ϕ′′(X ′′). It is consistent to denote
this random variable by c again. Indeed a measurable mapping ϕ may
now be applied to c in two different meanings, but the result is the same
because of ϕ(ϕ′(X ′)) = (ϕ ◦ϕ′)(X ′) and the observation that ϕ ◦ϕ′ takes
the constant value φ(c).

3. Measure theoretic models. For any collection T of target spaces we
get examples of stochastic ensembles by choosing some basic measurable
space (Ω, E) and then letting RS := {X : Ω → S |X is measurable},
S ∈ T , ϕ(X) := ϕ ◦ X and (X1, X2, . . .) the product mapping. These
are the canonical models. If a probability measure is given on the basic
space, then also the sets R′

S := {[X] |X ∈ RS} make up a stochastic en-
semble, where [X] denotes the equivalence class of measurable functions,
which are a.e. equal to X. Here ϕ

(
[X1], [X2], . . .

)
:=

[
ϕ(X1, X2, . . .)

]
,
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(
[X1], [X2], . . .

)
:=

[
(X1, X2, . . .)

]
. The axioms are trivially fulfilled. Note

that such stochastic ensembles do not consist of measurable functions in
general. 2

(3) says in short that ordinary variables may be replaced by random variables
in functional relations. The following proposition substantiates this statement.

Proposition 3. Let S, S′, S1, S2 be target spaces and let ϕi : S1 × S2 → S,
ψi : S1 × S2 → S′, i = 1, 2 be measurable mappings fulfilling

ϕ1(x, y) = ϕ2(x, y) ⇒ ψ1(x, y) = ψ2(x, y)

for all x ∈ S1, y ∈ S2. Let also X y S1, Y y S2 . Then

ϕ1(X,Y ) = ϕ2(X,Y ) ⇒ ψ1(X,Y ) = ψ2(X,Y ) .

The proposition comprises the possibility that ϕi and ψi do not de-
pend on x or y. Note that f.e. ϕ(x, y) = ϕ′(x) for all x, y implies
ϕ(X,Y ) = (ϕ′ ◦ π)(X,Y ) = ϕ′(X) by Axiom 3 and 4.

Proof. Let z = (x, y) and Z = (X,Y ). Consider θ : S × S × S′ × S′ → S′, given
by

θ(u, v, u′, v′) :=
{
u′ , if u = v ,
v′ , if u 6= v .

θ is measurable, due to the fact that the diagonal in S×S is measurable. Then

θ
(
ϕ1(z), ϕ1(z), ψ1(z), ψ2(z)

)
= ψ1(z) ,

whereas by assumption

θ
(
ϕ1(z), ϕ2(z), ψ1(z), ψ2(z)

)
= ψ2(z) .

By means of (3) replace the variable z by the random variable Z in these equa-
tions. Then by assumption the lefthand sides coincide, and our claim follows. 2

5 Events

To each random variable X y S and to each measurable subset B ⊂ S we
associate now an event, written as

{X ∈ B} .

In particular, since target spaces contain one point sets, we may form the events

{X = x} := {X ∈ {x}} , x ∈ S .

In order to carry out calculations, we have to define equality of events.
Here we use that the characteristic function 1B(·) of measurable B ⊂ S is a
measurable mapping from S to {0, 1}, which allows to apply Axiom 1 and 3.
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Definition. Two events {X ∈ B} and {X ′ ∈ B′} are said to be equal,

{X ∈ B} = {X ′ ∈ B′} ,

if 1B(X) = 1B′(X ′).

In other words: In our approach an event is an equivalence class of pairs (X,B).
To each event E we may associate its indicator variable IE , a random variable
with values in {0, 1}, given by

IE := 1B(X) , if E = {X ∈ B} .

Two events with the same indicator variable are equal. The set of events is
denoted by E .

Examples.

1. The equality
{ϕ(X) ∈ B} = {X ∈ ϕ−1(B)}

holds, since 1B(ϕ(X)) = 1B ◦ ϕ(X) = 1ϕ−1(B)(X) in view of Axiom 3.

2. For any event E the equality

{IE = 1} = E

holds, since 1{1} = id on {0, 1}, thus 1{1}(IE) = id(IE) = IE . 2

Next we introduce the basic operations with events.

Proposition 4. For any event E there exists an unique event, denoted Ec,
such that

{X ∈ B}c = {X ∈ Bc}

for any X y S and any measurable B ⊂ S.

Proof. For E = {X ∈ B} we define Ec := {X ∈ Bc}. We only have to show that
this definition is unambiguous. Note that 1Bc = η ◦1B with η(0) = 1, η(1) = 0.
Thus {X ∈ B} = {X ′ ∈ B′} and Axiom 3 imply 1Bc(X) = η(1B(X)) =
η(1B′(X ′)) = 1(B′)c(X ′). Therefore {X ∈ Bc} = {X ′ ∈ (B′)c}. 2

Proposition 5. For any finite or infinite sequence of events E1, E2, . . . there
exist two unique events, denoted as

⋃
nEn and

⋂
nEn, such that⋃

n

{X ∈ Bn} =
{
X ∈

⋃
n

Bn

}
,

⋂
n

{X ∈ Bn} =
{
X ∈

⋂
n

Bn

}
for any X y S and any measurable B1, B2, . . . ⊂ S.
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Proof. We proceed as in the last proof and define
⋃

nEn := {X ∈
⋃

nBn},
if En = {X ∈ Bn}. Note that 1S

n Bn
= max ◦(1B1 ,1B2 , . . .) with the mea-

surable function max(x1, x2, . . .) := maxn xn from {0, 1}` to {0, 1} (` being the
length of the sequence). Thus {X ∈ Bn} = {X ′ ∈ B′n} implies 1S

n Bn
(X) =

max(1B1(X),1B2(X), . . .) = max(1B′
1
(X ′),1B′

2
(X ′), . . .) = 1S

n B′
n
(X ′) in view

of Axiom 3 and 4. Therefore {X ∈
⋃

nBn} = {X ′ ∈
⋃

nB
′
n} such that

⋃
nEn

is well-defined.
⋂

nEn is obtained similarly.
It remains to show that each sequence E1, E2, . . . can be represented as

En = {X ∈ Bn} with one random variable X. Letting X := (IE1 , IE2 , . . .) with
target space S = {0, 1}` and Bn := {0, 1}n−1×{1}×{0, 1}`−n we indeed obtain

{X ∈ Bn} = {X ∈ π−1
n ({1})} = {πn(X) = 1} = {IEn

= 1} = En . (4)

This is the claim. 2

Proposition 6. There are two unique events Esure 6= Eimp such that

Esure = {X ∈ S} , Eimp = {X ∈ ∅}

for any X y S.

Proof. Again define Esure := {X ∈ S}. Let also X ′ y S′. Then 1S ◦π = 1S′ ◦π′
on S × S′ with projections π, π′. Axiom 3 implies 1S(X) = 1S ◦ π(X,X ′) =
1S′ ◦ π′(X,X ′) = 1S′(X ′), thus {X ∈ S} = {X ′ ∈ S′}. Similarly {X ∈ ∅} =
{X ′ ∈ ∅}, therefore Esure and Eimp are well-defined.

Now suppose that Esure = Eimp. Then all events are equal, as follows from
Proposition 5:

E = {X ∈ B} = {X ∈ B} ∩ {X ∈ S}
= {X ∈ B} ∩ {X ∈ ∅} = {X ∈ ∅} = Eimp .

This implies that any two random variables X,Y with the same target
space S are equal. Indeed, let C1, C2, . . . be a separating system in S
and let ϕ := (1C1 ,1C2 , . . .). Then ϕ(X) = (I{X∈C1}, I{X∈C2}, . . .) =
(I{Y ∈C1}, I{Y ∈C2}, . . .) = ϕ(Y ). ϕ is injective, thus we may conclude from
Proposition 3 that X = Y . This contradicts Axiom 2, and our claim follows. 2

Thus we have introduced complementary events, unions and intersections of
events as well as the sure and the impossible event. In view of the above
characterisations and of (4) it is obvious that properties of sets carry over to
properties of events. Altogether we end up with a Boolean σ-lattice, equipped
with the order relation

E ⊂ E′ :⇔ E = E ∩ E′ ,

with maximal element Esure and minimal element Eimp. It is a standard proce-
dure to obtain the other properties of fields of events.
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Examples.

1. For X = (X1, X2, . . .) we have from Proposition 5

{X ∈ B1 ×B2 × · · · } =
{
X ∈

⋂
n

π−1
n (Bn)

}
=

⋂
n

{X ∈ π−1
n (Bn)}

and from Axiom 4

{(X1, X2, . . .) ∈ B1 ×B2 × · · · } =
⋂
n

{Xn ∈ Bn} .

2. Let ∼ be any relation on S such that R := {(x, y) ∈ S2 : x ∼ y} is
a measurable subset of S2. Then it is natural to define {X ∼ Y } :=
{(X,Y ) ∈ R} and to write X ∼ Y , if {X ∼ Y } = Esure. This is in
accordance with Proposition 7 below. 2

Remark: σ-homomorphisms in stochastic ensembles. From Propo-
sition 4 to 6 it is immediate that each random variable X induces a σ-
homomorphism from B to E given by B 7→ h(B) := {X ∈ B}. From Proposition
7 below it follows that h determinesX uniquely. Therefore one may ask, whether
in a stochastic ensemble every σ-homomorphism h from the σ-field B of some
target space S into E comes from a random variable. This is true in two cases.

The first case is the classical one that the random variables with target space
S are given as above by the system of measurable mappings from some basic
measurable space (Ω, E) into S. Then Proposition 2 applies saying that there
are no other σ-homomorphisms.

In the other case we assume that S is a Polish space endowed with its Borel-
σ-field. This case is more profound: Choose a separating sequence C1, C2, . . .
Define the measurable function ϕ := (1C1 ,1C2 , . . .) from S into {0, 1}∞ and the
random variable Y := (Ih(C1), Ih(C2), . . .). Then

{Y ∈ B′} = h
(
ϕ−1(B′)

)
for each Borel-set B′ ⊂ {0, 1}∞. For the proof note that the system of B′

fulfilling our claim is a σ-field containing {0, 1}m−1 × {1} × {0, 1}∞. Now ϕ
is an injective measurable mapping from the Polish space S into the Polish
space {0, 1}∞. A celebrated theorem of Kuratowski says that then the image
of each Borel-set is a Borel-set again. An immediate consequence is that there
is a mapping ψ : {0, 1}∞ → S such that ψ ◦ ϕ is the identity on S. Letting
X := ψ(Y ) one obtains the claim: For each Borel-set B ⊂ S

{X ∈ B} = {Y ∈ ψ−1(B)} = h(B) . 2

6 Equality and a.s. equality

Recall from (1) that the diagonal D ⊂ S2 is measurable in the case of target
spaces. Thus we may define for X,Y y S

{X = Y } := {(X,Y ) ∈ D} , {X 6= Y } := {(X,Y ) ∈ Dc} .
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Proposition 7. For X,Y y S the following statements are equivalent:

i) X = Y ,

ii) {X = Y } = Esure.

iii) {X ∈ B} = {Y ∈ B} for all measurable B ⊂ S.

Proof. Let C1, C2, . . . separate the elements of S. Then ϕ(x) := (1C1 ,1C2 , . . .)
is a injectiv measurable function from S to {0, 1}∞. Thus for x, y ∈ S

x = y ⇔ 1D(x, y) = 1S×S(x, y) ⇔ ϕ(x) = ϕ(y) .

Proposition 3 implies

X = Y ⇔ 1D(X,Y ) = 1S×S(X,Y ) ⇔ ϕ(X) = ϕ(Y ) .

Thus X = Y is equivalent to {X = Y } = {(X,Y ) ∈ S × S} = Esure as well
as to {X ∈ Ci} = {Y ∈ Ci} for all i. Since any measurable B ⊂ S may be
included into the sequence C1, C2, . . ., our claim follows. 2

Next we discuss the notion of almost sure equality in stochastic ensembles.
Shortly speaking this is any equivalence relation compatible with our axioms.
As we shall see this conforms to the traditional definition of a.s. equality. On the
other hand it will become apparent that in our setting it is no longer necessary
to distinguish between random variables and a.s. defined random variables as
in the traditional approach. Both give rise to stochastic ensembles.

Definition. An equivalence relation ∼ on the collection of random variables
of a stochastic ensemble is called an a.s. equality, if

i) X ∼ Y implies that X,Y have the same target space.

ii) There exist X,Y y S such that X 6∼ Y .

iii) X ∼ Y ⇒ ϕ(X) ∼ ϕ(Y ).

iv) X1 ∼ Y1, X2 ∼ Y2, . . . ⇒ (X1, X2, . . .) ∼ (Y1, Y2, . . .).

Let X∼ denote the equivalence class of the a.s. equality ∼ containing X. Then
we may associate to X∼ a target space, namely that of X. Also we may define

ϕ(X∼) := ϕ(X)∼ ,
(
X∼

1 , X
∼
2 , . . .

)
:= (X1, X2, . . .)∼ .

Let
R∼

S :=
{
X∼ : X ∈ RS

}
With these conventions the following result is obvious.
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Proposition 8. R∼
S , S ∈ T is a stochastic ensemble.

In the sequel we show that our definition is intimately connected with the usual
definition of a.s. equality. Let us recall the notion of a null-system (a σ-ideal).
It is a system N ⊂ E of events fulfilling

E1, E2, . . . ∈ N ⇒
⋃
n

En ∈ N

E ∈ N , E′ ⊂ E ⇒ E′ ∈ N
Eimp ∈ N , Esure /∈ N

An important example of a null-system is the system of events of probability
zero in case E is endowed with a probability measure.

Proposition 9. To each a.s. equality ∼ the system of events

N∼ :=
{
{X 6= Y } : X ∼ Y

}
is a null-system. It fulfils

X ∼ Y ⇔ {X 6= Y } ∈ N∼

for any X,Y y S. The mapping ∼ 7→ N∼ establishes a one-to-one correspon-
dence between a.s. equality relations and null-systems.

Proof. From ⋃
n

{Xn 6= Yn} = {(X1, X2, . . .) 6= (Y1, Y2, . . .)}

and from condition iv) of the definition it follows that N∼ fulfils the first re-
quirement of a null-system. Next let X,Y y S and

E ⊂ {X 6= Y } .

We have to show E ∈ N∼. Suppose E = {Z ∈ B′} for a suitable Z y S′.
Define the measurable function ϕ : S × S′ → S as

ϕ(x, z) :=
{ x , if z ∈ B′
x0 , if z 6∈ B′

for some x0 ∈ S. It follows

{ϕ(X,Z) 6= ϕ(Y,Z}} = {Z ∈ B′} ∩ {X 6= Y } = E .

From X ∼ Y and condition iii) and iv) of the definition we obtain ϕ(X,Z) ∼
ϕ(Y,Z). Thus E ∈ N∼, which means that N∼ fulfils the second requirement
of a null-system. In particular: If Esure ∈ N∼, then {X 6= Y } ∈ N∼ for all
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X,Y y S. This contradicts condition ii) of the definition, thus we may conclude
Esure 6∈ N∼. Finally Eimp = {X 6= X} ∈ N∼. Therefore N∼ is a null-system.

We come to the second claim of the proposition. The implication ⇒ is
obvious, thus let us assume {X 6= Y } ∈ N∼. Then there exist X ′, Y ′ y S such
that {X 6= Y } = {X ′ 6= Y ′} and X ′ ∼ Y ′. We have to show that X ∼ Y ,
too. For this purpose we use the measurable mapping θ, defined in the proof of
Proposition 3. It fulfils

1D(x, y) = 1D′(x′, y′) ⇒ θ(x′, y′, x, y) = y ,

where D and D′ are the diagonals in S2 and (S′)2. By assumption 1D(X,Y ) =
1D′(X ′, Y ′), therefore Proposition 3 implies θ(X ′, Y ′, X, Y ) = Y . Moreover
θ(x′, x′, x, y) = x and consequently θ(X ′, X ′, X, Y ) = X. Since X ′ ∼ Y ′, we
obtain X ∼ Y in view of iii) and iv) of the definition . Thus also the second
statement is proved.

In particular this implies that ∼ 7→ N∼ is an injective mapping. It remains
to prove surjectivity. Thus let N be any null-system and define

X ∼ Y :⇔ {X 6= Y } ∈ N ,

whenever X and Y have the same target space. We have to show that ∼ is an
a.s. equality. Since {IEsure 6= IEimp} = Esure, IEsure 6∼ IEimp . Thus condition ii)
of the definition holds. Condition iii) follows from

{ϕ(X) 6= ϕ(Y )} ⊂ {X 6= Y }

and condition iv) follows from

{(X1, X2, . . .) 6= (Y1, Y2, . . .)} =
⋃
n

{Xn 6= Yn} .

This finishes the proof. 2

Random variables X y S, X ′ y S′ with different target spaces are always
unequal in our approach. It might be convenient to call them indistinguishable,
if S ∩ S′ is a measurable subset of S and of S′ and if

{X ∈ B} = {X ′ ∈ B} for all measurable B ⊂ S ∩ S′ ,
{X ∈ S ∩ S′} = {X ′ ∈ S ∩ S′} = Esure .

In the same manner a.s. indistinguishability may be introduced.

7 Convergence of random variables

‘In practice’ the small omegas prove convenient in operating with random vari-
ables within the traditional setting. In our approach such manipulations may
be reproduced without difficulties within the target spaces. This has been indi-
cated already, here we like to exemplify this briefly in the context of convergence
of random variables.

Let d be a metric on the target space S. We require
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• The mapping d : S2 → R+ is measurable.

• Let ϕ1, ϕ2, . . . be mappings from some target space S′ to S converging
pointwise to ϕ : S′ → S with respect to d. If the ϕn are measurable, then
also ϕ is measurable.

As is well-known these assumptions are satisfied, if (S, d) is a separable met-
ric space and B the corresponding Borel-σ-field on S. An example of a non-
separable metric space of importance fulfilling both requirements is the space of
càdlàg functions endowed with the metric of locally uniform convergence (this
metric is used in the theory of stochastic integration).

Now we assume that besides S also S∞ is a target space. Let us consider the
set of convergent sequences with given limit and the set of Cauchy-sequences,

Blim := {(x, x1, x2, . . .) ∈ S × S∞ : x = lim
n
xn} ,

BCauchy := {(x1, x2, . . .) ∈ S∞ : (xn) is Cauchy} .

Since Blim =
⋂∞

k=1

⋃∞
m=1

⋂∞
n=m{(x, x1, x2, . . .) : d(xn, x) ≤ εk} and BCauchy =⋂∞

k=1

⋃∞
m=1

⋂∞
n=m{(x1, x2, . . .) : d(xm, xn) ≤ εk} for any sequence εk ↓ 0, these

are measurable subsets of S × S∞ and S∞. Thus for any random variables
X,X1, X2, . . . y S we may define the events

{Xn → X} := {(X,X1, X2, . . .) ∈ Blim} ,
{Xn is Cauchy} := {(X1, X2, . . .) ∈ BCauchy} .

Proposition 10. For any X,X1, X2, . . . y S

{Xn → X} ⊂ {Xn is Cauchy} .

Moreover, if (S, d) is a complete metric space, then for any X1, X2, . . . y S
there is a X y S such that

{Xn → X} = {Xn is Cauchy} .

Proof. Since Blim ⊂ S ×BCauchy

{Xn → X} ⊂ {(X,X1, X2, . . .) ∈ S ×BCauchy} = {Xn is Cauchy} .

Moreover in the case of a complete metric space let ϕn, ϕ : S∞ → S be given
by

ϕn(x1, x2, . . .) :=
{ xn , if (x1, x2, . . .) ∈ BCauchy ,
z, otherwise ,

ϕ(x1, x2, . . .) :=
{ limn xn, if (x1, x2, . . .) ∈ BCauchy ,
z, otherwise

with some given z ∈ S. ϕn ist measurable and ϕ(x1, x2, . . .) =
limn ϕn(x1, x2, . . .) for all (x1, x2, . . .), thus ϕ is measurable too. Define
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X := ϕ(X1, X2, . . .). Because of completeness ψ−1(Blim) = BCauchy for
the measurable mapping ψ : S∞ → S × S∞, given by ψ(x1, x2, . . .) :=
(ϕ(x1, x2, . . .), x1, x2, . . .). Thus

{Xn → X} = {ψ(X1, X2, . . .) ∈ Blim}
= {(X1, X2, . . .) ∈ BCauchy} = {Xn is Cauchy} ,

which is the claim. 2
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