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1 Introduction

The arithmetic theory of quadratic forms goes back to FERMAT, LEGENDRE, LA-
GRANGE, and GAUSS. Algorithmic problems for lattices and quadratic forms have
been promoted by the LLL-algorithm [14]. Recently definite forms or lattices gave
rise to cryptographic protocols related to the NP-hard problems of finding a shortest
or a closest lattice vector; see [15], [20] for hardness results and [1], [8], [11], [12] for
applications. Cryptographic protocols based on NP-hard problems seem to withstand
attacks by quantum computers. However, lattice cryptography requires lattices of high
dimension. This yields long cryptographic keys and slow protocols.

By contrast, we present identification and signatures based on hard problems of
quadratic forms in dimension three and four. Bounded solutions of equivalence and
representation problems for indefinite ternary forms are shown to be NP-hard for prob-
abilistic reductions. This follows from ADLEMAN and MANDERS [18] who proved
NP-completeness of deciding solvability of inhomogeneous binary quadratic equations
over the integers. Signature generation and verification have quadratic bit complexity
for integers of bit length 150. Note that RSA has cubic bit complexity for much longer
integers.

Outline. Section 2 introduces computational problems of quadratic forms. Section 3
presents an identification scheme that proves knowledge of an equivalence transform
for ternary anisotropic forms. It performs one LLL-reduction and a few arithmetic
steps per round. Section 4 extends the identification to long challenges and signatures.
Section 5 gives NP-hardness proofs. Section 6 presents polynomial time solutions for
problems of isotropic forms of odd squarefree determinant. Section 7 characterizes
anisotropic forms.
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2 The equivalence problem of quadratic forms

Quadratic forms. An n-ary quadratic form (or simply form) f over Z is a homoge-
neous quadratic polynomial f = fA =

∑n
i,j=1 ai,jxixj with coefficients ai,j = aj,i ∈

1
2Z for i 6= j, ai,i ∈ Z, A = (ai,j) ∈ Zn×n. Note that f takes integer values for
x1, ..., xn ∈ Z. By definition det f = det A, dim f = n.

Equivalence classes. Let f = fA be an n-ary form. For T ∈ Zn×n let fAT denote
the form fT tAT . The forms f, fT are called equivalent if T ∈ GLn(Z), i.e., | det T | =
1. Obviously det(fT ) = (det T )2 det f = det f . We call the equivalence class of f
simply the class of f . Let O(f) = {T : fT = f, | det T | = 1} denote the group of
automorphisms of f . The textbook by CASSELS [3] surveys of the structure of classes.

Relevant properties of forms are: f is regular if det f 6= 0; f is indefinite if f takes
both positive and negative values. Otherwise f is either positive or negative, positive
forms correspond to the Gram matrices A = BtB ∈ Rn×n of lattice bases B ∈ Rn×n.
f = fA is primitive if gcd(aij | 1 ≤ i, j ≤ n) = 1; f is isotropic if f(u) = 0 holds
for some nonzero u ∈ Zn, otherwise f is anisotropic. Every regular isotropic form is
necessarily indefinite. The forms f =

∑n
i=1 aix

2
i are called diagonal.

We study the equivalence problem of forms f ∈ Q for various sets of forms Q.

Computational equivalence problem, CEP(Q)
GIVEN: equivalent forms f, g ∈ Q.
FIND: T ∈ GLn(Z) such that g = fT .

Representations. An n-ary form f represents the integer m if there exists u ∈ Zn\{0}
such that f(u) = m. The representation u is primitive if gcd(u1, . . . , un) = 1. Let
CR(Q) denote the problem to find for given f ∈ Q and m ∈ Z a primitive u ∈ Zn

such that f(u) = m whenever such u exists.

We show in section 5 that bounded solutions of CEP and CR are NP-hard to find
for indefinite forms f of dim f = 3 and for definite forms f of dim f = 5.

LLL-reduction [14] extends from lattice bases and definite forms to indefinite forms.
LLL-forms fA, A = (ai,j) satisfy a2

1,1 ≤ 2n/2(det A)2/n. There is a poly-time algo-
rithm that transforms f into an LLL-form fT with T ∈ GLn(Z), see [13], [25], [27].

3 Identification based on the equivalence problem

We present efficient proofs of knowledge of an equivalence transform for indefinite
forms. We use anisotropic forms for keys because there exist poly-time (unbounded)
solutions of CEP and CR for isotropic forms f given the factorization of det f , see
section 6. No relevant poly-time solutions are known for CEP and CR and anisotropic
forms. Let k ∈ N be a security parameter.

Key generation. Pick an anisotropic form f1 = ax2 + by2 − cz2 with a, b, c ∈R [1, 2k[.
Using the factorization of det f verify that f is anisotropic, see section 7.
Generate T and f1T by CT(f1) and set S := T , f0 := f1S.
The public key is f0, f1, the private key is S.
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The goal of the following procedure CT(f) is to generate within (P,V)1 forms
fbS

bT for b = 0, 1 via CT(fbS
b) with (practically) indistinguishable distributions.

CT(f): Computes a randomized T = (ti,j) ∈ GL3(Z) and an LLL-form f := fT .
1. Pick ti,j ∈R]−2k, 2k[ at random for j 6= 1. Compute the tadj

i,1 of (tadj
i,j ) = T−1 det T :

(tadj
1,1 , tadj

2,1 , tadj
3,1 ) := (t2,2t3,3 − t2,3t3,2, t1,2t3,3 − t1,3t3,2, t1,2t3,3 − t1,3t3,2).

2. Compute the ti,1 by solving
∑3

i=1 ti,1 tadj
i,1 = gcd(tadj

1,1 , tadj
2,1 , tadj

3,1 ) =: gcd for ti,1 ∈ Z
by the extended gcd-algorithm. If gcd 6= 1 then repeat with some new ti,j , j 6= 1.

3. LLL-reduce fT to fTT ′, replace T := TT ′, and denote CT(f) := fT .

Step 3 balances the initially large |ti,1| ≤ maxi |tadj
i,1 | < 22k+2 with the smaller ti,j ,

j 6= 1. The random initial ti,j , j 6= 1 randomize the leading and the least significant k
bits of the final ti,j .

Identification (P,V)1
The prover P proves to the verifier V knowledge of S.
1. P sends as commitment the LLL-form f̄ := f0T := CT(f0),
2. V sends a random one-bit challenge b ∈R {0, 1},
3. P sends the reply Rb := SbT , and V checks that fbRb = f̄ and | det Rb| = 1.
Obviously, the honest prover P withstands the test fbRb = f̄ .

Proof of knowledge. Consider a fraudulent P̃ that sends arbitrary f̄ , R̄b. The trivial
P̃ guesses b in step 1 with probability 1

2 , sends the LLL-form f̄ := fbT := CT(fb)
and replies R̄b := T . Then P̃ withstands the verification with probability 1

2 . The
probability 1

2 cannot be increased. If an arbitrary P̃ withstands the verification for the
same f̄ and both challenges b = 0, 1 then f0R̄0 = f̄ = f1R̄1, and thus f1R̄1R̄

−1
0 = f0.

This yields an alternative private key S̄ = R̄1R̄
−1
0 ∈ O(f1)S in time proportional to

|(P̃,V)1| (which denotes the number of steps of (P̃,V)1):

Theorem 3.1. An arbitrary fraudulent prover P̃ that succeeds in (P̃,V)1 with proba-
bility ε > 1

2 finds some S̄ ∈ O(f1)S in expected time |(P̃,V)1|/(ε− 1
2).

Secret key protection. We give heuristic arguments that the protocol (P,V)1 is secure
against a fraudulent verifier Ṽ , in particular that the information Rb released to Ṽ does
not help to compute some S̄ ∈ O(f1)S.

Only P’s reply R1 = ST depends on S whereas R0 = T is independent of S. How-
ever, f1 and f̄ define R1 uniquely up to automorphisms of f1 by the equation f1R1 = f̄ .
Note that f1 and f̄ should be nearly independent of S since f0 = f1S and f̄ = f1ST
are generated by CT using independent random bits. Therefore, nearly all information
that ST contains about S should depend on the choice of automorphisms of f1, and
these automorphisms must be sufficiently small. There provably exist polynomial size
A ∈ O(f1) [6] but their known bounds are extremely large having polynomial degree
larger than 500.

The protocol (P,V)1 would be statistical zeroknowledge if the distributions of T
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and ST differ negligibly. We did not yet check this out experimentally.
For further protection we can let P randomize R1 = A1ST by chosing A1 ∈ O(f1)

according to some random distribution; to this end it suffices to precompute generators
of O(f1) once and for all. If the resulting distributions of R1 are close for varying ST ,
the R1 will practically only depend on f̄ and f1. We conjecture that this additional
measure of protection is not necessary:

Conjecture. P does not reveal relevant information about S.

This extends to independent sequential executions of (P,V)1, since P generates the
corresponding f̄ := f0T := CT(f0) using independent random bits. Since (P,V)1 is
restricted to one-bit challenges, a security level 2100 requires 100 independent execu-
tions of (P,V)1 and 300 rounds.

4 Three round identification and signatures

Our signatures correspond to identification in three rounds with long challenges, where
the verifier is simulated using a hash function. This identification releases some infor-
mation about the private key which we argue to be irrelevant. This information cannot
be combined over several identifications, but it reduces CEP to (n − 1)-ary subforms
of f0, f1. To make the reduced CEP hard we increase dim f1 to n = 4.

Private key S ∈ GL4(Z),
Public key anisotropic forms f0 = f1S, f1 =

∑4
i=1 aix

2
i with (−1)iai ∈ [1, 2k[.

Key generation. Apply a public hash function to a public / private random 100-bit
seed to generate the pseudo-random bits for the construction of S via CT(f1) and the
pseudo-random entries |ai| ∈ [1, 2k[ of f1 (make sure that p2k|d, p2k+1 - d holds for
a small prime p and d := a1a2a3a4 and that

∏
i<j(ai, aj)p = (−1)p mod 2 holds as re-

quired by Theorem 7.2.). This way the public / private keys have bit lengths 10k + 100
and 100, respectively. Note that CT, extended to n = 4 performs arithmetic steps on
3k-bit integers. The forms f0, f1 are indefinite and so are all ternary subforms of f0, f1.

Three round identification (P,V)2
Prover P solves problems posed by the verifier V that are hard without knowledge of S
1. P sends the LLL-form f̄ := f0T̄ := CT(f0) to V ,
2. V computes the LLL-form f ′ := f̄T ′ := CT(f̄) and sends T ′ to P ,
3. P sends e′b := SbT̄ T ′eb for b = 0, 1 and e1 := (1, 0, 0, 0)t, e0 := (0, 0, 0, 1)t,

V checks that fbe′b = f̄T ′eb for b = 0, 1. (we abbreviate T := T̄ T ′)

Note that P randomizes T̄ to protect against a fraudulent Ṽ and V randomizes T ′

against a fraudulent P̃ . Importantly Ṽ does not know T = T̄ T ′ but only T ′.

Security against a fraudulent P̃ . A successful P̃ must find solutions e′b of fb(e′b) = m
for both b = 0, 1, where the randomized m := f̄T ′eb is chosen by the verifier. The
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problem to find a small solution e′b without the private key is NP-hard by Theorem 5.1.
The fastest known method for solving fbe′b = f̄T ′eb for e′b is by reconstructing S.

By revealing e′1 = (
∑4

i=1 sj,iti,1 | j = 1, ..., 4)t the honest P proves bounds on∑
i |sj,i| for j = 1, ..., 4, S = (si,j). P comes close to prove a bound on |s1,1| as is

required for the NP-hardness results of section 5.

Security against a fraudulent Ṽ . Note that P reveals S if P replies to various challenges
T ′ for the same f̄ , it suffices that Ṽ generates challenges by cyclically permuting the
columns of some T ′. Randomization of f̄ via CT protects against this attack.

The novelty compared to (P,V)1 is that step 3 sends information about SbT̄ T ′ for
both b = 0, 1 by sending e′b = SbT̄ T ′eb for b = 0, 1. SbT̄ T ′ releases for a single b no
relevant information about S as has been explained in section 3.

Next, we consider the following attacks that combine both replies e′b:
1. recovering direct information about S from e′0, e

′
1,

2. reconstruct ST from e′1 and T from e′0. This would reveal S.

1. The small, orthogonal vectors e0, e1 are chosen so that T̄ T ′eb for b = 0, 1 are nearly
statistically independent for random T = T̄ T ′. This protects against the following
attack. If e1 ∈ span(e0) then Te1 ∈ span(Te0) and thus e′1 ∈ span(Se′0). This would
completely disclose S by a few identifications. This attack can be extended to the case
that e0, e1 are nearly parallel.

It is crucial that Te0, Te1 are for T = T̄ T ′ nearly statistically independent (which
holds for small, orthogonal e0, e1). This makes the information released by the com-
bination of e′0, e

′
1 to Ṽ practically negligible, and completely foils the described attack.

Moreover, the released information cannot be combined for several identifications as
the T are generated by independent random bits.

2. Hardness of recovering ST from e′1. Let f1 =
∑4

i=1 aix
2
i = fA1 , f ′ = fA′ = f1ST .

Given e′1 = STe1 we can transform f ′ into f ′′ = fA′′ := f ′T ′′ such that a1 = a′′1,1,
and thus (

1 0t

u Qt

)
A1

(
1 ut

0 Q

)
= A′′ =:

(
a1 a1ut

a1u A′′
+

)
(5)

holds for some u ∈ Z3, Q ∈ GL3(Z), A′′
+ ∈ Z3×3. We rewrite (5) as

QtA+Q = A′′
u for A′′

u := A′′
+ + a1uut,

where A+ is the diagonal submatrix of A1 with diagonal (a2, a3, a4). Solving equation
(5) for Q ∈ GL3(Z) requires an unbounded solution of CEP for fA+ , fA′′

u
. Thus,

releasing e′1 reduces CEP to ternary anisotropic forms and the recovering of u.

Hardness of recovering u. Equation (5) implies that det A′′
+ = det A′′

u, and this equation
can be written as det A′′

+ = fD(u)+a2a3a4 for the indefinite, diagonal matrix D with
diagonal a1(a3a4, a2a4, a2a3) and a1, a3 < 0 < a2, a4. Hence the construction of u
from e′1 requires to solve fD(u) = det A′′

+ − a2a3a4. This problem can be made hard
by ensuring that fD is anisotropic, see sections 6, 7. Then no isotropic vector can help
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to recover u.

The best known attack. In order to solve CEP for f = fA+ and f ′ = fA′′
u

it is promising
to exhaust the reduced forms fA in the class of f, f ′ by simple transforms of GL3(Z):
permute two rows and columns of A and transform the result into an reduced form.
For k-bit coefficients of f, f ′ we have that d := det f = O(23k) and the number of on
average there are Θ(d) reduced forms in the class of f . ( A simple counting argument
shows that there are Θ(26k) ternary, indefinite forms with coefficients of size O(2k) that
are reduced in the sense of GAUSS [7, art. 272], see also LAGARIAS [16, sect. 4 D].
These distribute over Θ(23k) determinants d which gives on average Θ(23k) reduced
forms per d. ) This can solve CEP for f, f ′ in average time O(23k).

Conclusion. The problem to recover Q,u and thus ST from e′1 = STe1 requires
Ω(23k) arithmetic steps for all known algorithms. We are not aware of any better
method for solving fbe′b = f̄T ′eb for e′b. Therefore, k = 50 seems to provide sufficient
security.

Most instances of the recovering problem are subexponential for n = 3. For indef-
inite, binary A+, D, the multiplicative structure of the Gaussian cycle [7, art.183ff] of
reduced forms containing fA+ , fD, yields subexponential algorithms see [2, chap. 11].

Signatures. Extend the keys of (P,V)2 by random seeds s′, s∗ ∈R {0, 1}100, s′ public
and s∗ private. To generate a signature for message m follow (P,V)2 but simulate V
randomized by H(m, s′) for a public hash function H .
Signature generation. Compute T̄ , f̄ := f0T̄ by CT(f0) randomized by H(m, s∗),
keep T̄ secret. Compute f̄T ′, T ′ by CT(f̄) randomized by H(m, s′), set e′b := SbT̄ T ′eb.
The resulting signature (f̄ , e′0, e

′
1) consists of 18 k-bit integers, the entries of e′0, e

′
1, f̄ .

Verification computes T ′ from m, s′ and checks that fbe′b = f̄T ′eb for b = 0, 1.
The bit complexity of signature generation and verification is quadratic O(k2), its main
work is LLL-reduction within CT. LLL-reduction using orthogonalisation in floating
point arithmetic has quadratic bit complexity using school multiplication [21], [25].

5 NP-hardness

5.1 The results. Recall that a set S ⊂ Z∗, consisting of sequences of integers, is in NP
if S is decidable in nondeterministic poly-time. We prove probabilistic NP-hardness
of decisional variants of CEP(Q) and CR(Q) that ask for a solution x with a given
bound. We first present the results and thereafter the proofs.

Decisional Bounded Representation Problem, DBR(Q)
GIVEN: f ∈ Q, m ∈ N, c ∈ N, the factorization of det f .
DECIDE: whether ∃ primitive x ∈ Zn: f(x) = m and |x1| ≤ c.

The given factorization of det f does not decrease the worst-case complexity.

Recall that the class RP of random polynomial time consists of all sets S ⊂ Z∗
for which there is a probabilistic, poly-time algorithm which accepts every s ∈ S with
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probability ≥ 1
2 and rejects every s ∈ Z∗ \ S with probability 1.

Let Qind consist of all indefinite, primitive forms f of dim f = 3.

Theorem 5.1. DBR(Qind) is probabilistic NP-hard, i.e., NP ⊆ RPDBR(Qind).

Therefore, if DBR(Qind) is in RP then so is every NP-set. The proof of Theorem
5.1 reduces a Boolean form Φ in 3-CNF to a form f = 2x2 + 2byz, where 1

2 det f ∈ Z
is odd. Theorem 5.1 follows essentially from [18].

Dimension 3 is minimal for this hardness result. In fact, an algorithm of Gauß
computes small representations for binary forms in subexponential time if the class
number is small (see [7, art. 183–221], [5, sec. 5.2 and 5.6]).

For isotropic ternary forms of odd squarefree determinant unbounded solutions of
CEP and CR can be found in poly-time given an isotropic vector. For anisotropic
forms, by contrast, CEP, CR seem to be hard on average.

Theorem 5.2 shows that deciding whether a lattice of dimension 5 has a vector of
given length is NP-hard.

Theorem 5.2. Let Qdf consist of all positive definite forms f of dim f = 5. Then
DBR(Qdf ) is NP-complete.

Representation problems for definite forms are by Theorem 5.2 harder than equiva-
lence problems. In fact, equivalence transformations of definite forms can be efficiently
computed in constant dimension by computing shortest lattice vectors [22], [23].

Incomplete forms. If some coefficients ai,j of A are undefined, ai,j = ∗, and if det A
does not depend on the undefined ai,j then we call fA incomplete. For example the
form f = ax2 + bxy + 2a1,3xz + z2 is incomplete for a1,3 = ∗. A completion of fA

defines the undefined ai,j of A.

Decisional Bounded Equivalence Problem, DBE(Q)
GIVEN: f, g ∈ Q, c ∈ N, the factorization of det f .
DECIDE: whether ∃T ∈ GLn(Z): f T = g, |t1,1| ≤ c.

DBE(Q) for given n-ary incomplete forms f, g ∈ Q asks for the existence of T ∈
GLn(Z) and completions f̄ , ḡ of f, g such that f̄T = ḡ, |T1,1| ≤ c.
Let Qinin extend the set Qind by all incomplete, indefinite forms f of dim f = 3.

Theorem 5.3. DBE(Qinin) is probabilistic NP-hard.

Extensions. 1. The NP-hardness of Theorem 5.1 extends to all dimensions n ≥ 3.
2. The proof of Theorem 5.1 can be extended from isotropic to anisotropic forms
(that are used for identification and signatures). However, this requires a considerable
amount of number theory and the Cohen-Lenstra heuristics for class numbers of real
quadratic fields, see [10], [9]. The main problem is to show that all values x2 + by are
covered by the anisotropic forms x2 + b(y2 + z2) for a few b.
3. At the end of this section we sketch how extend Theorem 5.3 from Qinin to Qind.
4. The problem DBR(Qdf ) is NP-complete in dimension ≥ 5 even if the condition that
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|x1| ≤ c is removed. This holds because the problem to decide whether ax2 + by = c
has a solution x, y ∈ N is NP-hard [18], [9].

5.2 From SAT to squares. The following problem on binary Diophantine equations
will be used as an intermediary problem for reductions.

Modular Square Problem, MS

GIVEN: a, b, c ∈ N such that b = pm+1b′; a, p prime, b′ squarefree, p ≥ 5.
DECIDE: ∃x ∈ Z: x2 ≡ a mod b and |x| ≤ c.

Let 4r denote that there is a probabilistic, poly-time Karp reduction, and let 3SAT
be the problem to decide satisfiability of Boolean forms in 3-CNF. Proposition 5.4 is
similar to a result of ADLEMAN AND MANDERS [18].

Proposition 5.4. 3SAT 4r MS.

Proof. We transform a given Boolean form Φ in 3-CNF into an instance (a, b, c) of MS
that is solvable if and only if Φ is satisfiable. Let Φ contain each clause at most once,
and let no clause of Φ contain a variable both complemented and uncomplemented.
Let ` be the number of variables in Φ. Choose an enumeration σ1, . . . , σm of all such
clauses in the variables x1, . . . , x` with exactly three literals such that the bijection
i 7→ σi and its inverse are poly-time. We write σ ∈ Φ if σ occurs in Φ, and xj ∈ σ
(x̄j ∈ σ) if the j-th variable occurs uncomplemented (complemented) in clause σ. Let
n = 2m + `. Let r = (r1, ..., r`) ∈ {0, 1}` denote Boolean values for x1, ..., x`, where
1 corresponds to true and 0 corresponds to false. For a clause σ and r ∈ {0, 1}` define

W (σ, r) =
∑

i:xi∈σ ri +
∑

i:x̄i∈σ(1− ri).

Introducing new variables y1, . . . , ym we set for k = 1, ...,m

Rk :=

{
yk −W (σk, r) + 1 if σk∈ Φ,

yk −W (σk, r) if σk /∈ Φ,

Since Φ is in 3-CNF, we have W (σk, r) = 0 if assignment r does not satisfy clause σk,
and 1 ≤ W (σk, r) ≤ 3 otherwise. Hence the equations R1 = · · · = Rm = 0 have a
solution r ∈ {0, 1}`, y ∈ {0, 1, 2, 3}m if and only if Φ is satisfiable.

We select a prime p ≥ 5. As −3 ≤ Rk ≤ 4 for all choices of yk ∈ {0, 1, 2, 3},
ri ∈ {0, 1}, the equations R1 = · · · = Rm = 0 holds if and only if

∑m
k=1 Rkpk = 0.

The latter equation is equivalent to∑m
k=1(2 Rk)pk ≡ 0 mod pm+1. (5.1)

since
∣∣∑m

k=1 Rkpk
∣∣ ≤ 4

∑m
k=1 pk < pm+1 holds for p ≥ 5 and p is odd.

We now add α0 + 1 to the left hand side of (5.1), where α0 is considered a variable
taking values in {1,−1}. Hence (5.1) is solvable if and only if

α0 + 1 +
∑m

k=1(2 Rk)pk ≡ 0 mod pm+1. (5.2)
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for yk, ri, α0 ranging over their respective domains. Moreover, if (5.2) is solvable, then
necessarily α0 = −1 by reduction modulo p.

We express y1, . . . , ym and r1, . . . , r` in (5.2) by new variables α1, . . . , αn, n =
2m + ` ranging over {1,−1}, we set

yk := 1
2((1− α2k−1) + 2(1− α2k)), ri := 1

2(1− α2m+i). (5.3)

Exactly all combinations of yk ∈ {0, 1, 2, 3}, ri ∈ {0, 1} are covered by α1, . . . , αn.
We can rewrite (5.2) via (5.3) into∑n

j=0 cjαj ≡ τ mod pm+1 (5.4)

for some cj , τ ∈ Z.We see that Φ is satisfiable if and only if (5.4) is solvable for
α ∈ {−1, 1}n+1. Note that p 6 |τ , as the constant part of (5.2) equals 1.

We select a prime p0 > 4 · pm+1(n + 1) and primes p0 < p1 < . . . < pn that are
of polynomial size in pm. For j = 1, . . . , n compute θj via the Chinese Remainder
Theorem to be the smallest positive integer satisfying

θj


≡ cj mod pm+1,

≡ 0 mod
∏

i 6=j pi,

6≡ 0 mod pj .

We see that Φ is satisfiable if and only if∑n
j=0 θjαj ≡ τ mod pm+1 (5.5)

is solvable for α ∈ {±1}n+1.

Lemma 5.5. Let K :=
∏n

j=0 pj and c :=
∑n

j=0 θj . For x ∈ Z, |x| ≤ c the equation
c2 ≡ x2 mod K holds if and only if x =

∑n
j=0 αjθj for some α ∈ {±1}n+1.

Proof. Since θjθj′ ≡ 0 mod K for j 6= j′ each x =
∑n

j=0 αjθj satisfies c2 ≡ x2 mod K.
Conversely, c2 ≡ x2 mod K implies 0 ≡ (c−x)(c+x) mod K, and thus either pj |c−x
or pj |c + x holds for every j = 0, . . . , n. This disjunction is exclusive: if pj |c− x and
pj |c + x then pj |2c, and thus pj |c. This contradicts the fact that c ≡ θj 6≡ 0 mod pj .

Since pj divides exactly one of c ± x we define αj ∈ {±1} such that pj |c − αjx,
hence x ≡ αjc mod pj . Setting x′ :=

∑n
i=0 αiθi yields x ≡ x′ mod pj for all j, and

thus x ≡ x′ mod K.

We see from |x′| ≤
∑n

j=0 θj = c and |x| ≤ c that |x− x′| ≤ 2c.

The choice of pj guarantees that 2·pm+1

pj
≤ 1

2(n+1) , and thus

θj < 2 · pm+1∏n
i=0
i6=j

pi = 2·pm+1K
pj

≤ K
2(n+1) .

Hence c =
∑n

j=0 θj < K/2. We see from |x − x′| ≤ 2c that |x − x′| < K, and from
x ≡ x′ mod K that x and x′ coincide. This proves the lemma.
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Combining (5.5) with Lemma 5.5 we see that Φ is satisfiable if and only if there
exists x ∈ Z, |x| ≤ c such that

c2 ≡ x2 mod K, x ≡ τ mod pm+1.

These equations are equivalent to each of the following equations

c2 ≡ x2 mod K, τ 2 ≡ x2 mod pm+1 (Z∗pm+1 is cyclic),

pm+1(c2 − x2) + K(τ 2 − x2) ≡ 0 mod pm+1K,

(pm+1 + K)x2 ≡ Kτ 2 + pm+1c2 mod pm+1K.

Since p 6 |K the latter equation can be written as

x2 ≡ a mod b (5.6)

for b = pm+1K and a ≡ (pm+1 + K)−1(Kτ 2 + pm+1c2) mod pm+1K. (5.7)

Then (5.6) has a solution x ∈ Z with |x| ≤ c if and only if Φ is satisfiable. We can
select a prime a in the arithmetic progression (5.7) in random poly-time. Clearly K is
odd and squarefree, and the prime a is coprime to b.

Then (a, b, c) is a solvable instance of MS if and only if Φ is satisfiable.

5.3 Proofs of Theorems. Proof of Theorem 5.1. Let Φ be a boolean formula in 3-
CNF. The proof of Prop. 5.4 transforms Φ into an instance (a, b, c) of MS, ab odd, such
that there exist x, y ∈ Z satisfying x2 + by = a, |x| ≤ c if and only if Φ is satisfiable.
We see that the form f = 2x2 + 2byz yields a solvable instance f(x, y, z) = 2a of
DBR(Qind) if and only if Φ is satisfiable. For a primitive solution (x, y, z) choose
z = 1. Note that f is primitive since b is odd. Moreover, f is indefinite, isotropic and
det f = −2b2. This proves the claim.

Proof of Theorem 5.2. As in the proof of Prop. 5.4 we transform Φ into an instance
(a, b, c) of MS. Here we choose a that satisfies equation (5.7) such that a > c2. Then
all integer solutions x, y of x2 + by = a , |x| ≤ c satisfy y > 0. Lagrange’s Four Square
Theorem shows that y ∈ N can be represented as a sum of four squares. Therefore, we
have transformed Φ into (a, b, c) ∈ N3 such that x2

1 + b(x2
2 + · · ·+ x2

5) = a, |x1| ≤ c is
solvable for (x1, ..., x5) ∈ N5 if and only if Φ is satisfiable. This proves the theorem.

Proof of Theorem 5.3. We transform instances (a, b, c) of MS constructed in the proof
of Prop. 5.4 into instances of DBE(Qinin), preserving solvability. We have that a b/2 x

b/2 0 0
x 0 1

 =

 x y 1
0 1 0
1 0 0


 1 0 0

0 0 b/2
0 b/2 0


 x 0 1

y 1 0
1 0 0


for a = x2 + by. Let f = x2 + byz and f ′ = ax2 + bxy + γxz + z2 with γ = ∗, then
f = f ′T is solvable with |t1,1| ≤ c if and only if a = x2 + by, |x| ≤ c is solvable.
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NP-hardness of DBE(Qind). We sketch how to extend the proof of Theorem 5.3 to
reduce to complete forms in Qind, for more details see [9]. We construct for f = x2 +
byz a list of forms f1, . . . , fN such that every solution (x, y, z) of a = x2 + byz, |x| ≤ c
provides a first column of some S ∈ GL3(Z) satisfying fS = fj for some fj . Hence
(a, b, c) is solvable for MS if and only if (f, fj , c) is for some 1 ≤ j ≤ N solvable for
DBE. This proves the desired reduction.

We construct the fj to represent all orbits of primitive representations of a by f
under O(f). ZHURAVLEV [28, sec. 1.2] classifies these orbits in terms of modular
matrix equations. We construct the fj by solving these equations. First we determine
the genus of fj , i.e., the fj up to simultaneous equivalence over the reals R and over all
rings of p-adic integers. Then we construct the actual fj by a constructive version of
the classical proof of the existence of genera [3, sec. 9.5]. According to MS, the integer
a is prime, and this ensures that N = O(1). Moreover, the construction is poly-time
per entry fj , given the factorization of ab.

6 Solving quadratic equations using an isotropic vector

Isotropic forms fA are universal over any field F, i.e., for A ∈ Fn×n the equation
fA(x) = m is solvable for all m ∈ F if it is solvable for m = 0,x 6= 0, [3, chap. 2.2].
We show that fA(x) = m can easily be solved for all m ∈ Z over the integers if an
isotropic vector is given and det A is odd and squarefree. Theorem 6.1 transforms an
isotropic form fA with odd, squarefree determinant d = det A into the form 2xy − dz2

and Theorem 6.2 solves the equation 2xy − dz2 = m. Importantly, Simon [26], [27]
has shown that an isotropic vector can be found in poly-time for any isotropic form f
given the factorization of det f .

Theorem 6.1. Let fA be an isotropic, ternary form and let d := det A be odd and
squarefree. Given an isotropic vector (x′, y′, z′) the form fA can be transformed in
poly-time into the equivalent form 2xy − dz2.

Proof. Make (x′, y′, z′) primitive by dividing it by gcd(x′, y′, z′). Compute some S ∈
GL3(Z) with first column vector (x′, y′, z′)t = S(1, 0, 0)t as follows:

Compute g := gcd(y′, z′) and S1, S2 ∈ GL3(Z) such that S1(x′, y′, z′)t = (x′, g, 0)t,
S2(x′, g, 0)t = (1, 0, 0)t. Set S−1 := S2S1 since S2S1(x′, y′, z′)t = S2(x′, g, 0)t =
(1, 0, 0)t. To compute S1 solve y′a + z′b = g by the extended gcd-algorithm. Then

S′1 :=
( a b

z′/g −y′/g

)
∈ GL2(Z) satisfies S′1(y

′, z′)t = (g, 0)t. Extend S′1 to S1 ∈

GL3(Z) by adding the first row (1, 0, 0) and first column (1, 0, 0)t. Hence S1(x′, y′, z′)t

= (x′, g, 0)t. Compute S2 accordingly by solving x′a + gb = 1 = gcd(x′, g).
Given S set A′ = (a′i,j)1≤i,j≤3 := StAS. Then a′1,1 = 0 as (x′, y′, z′) is isotropic.
Compute via the extended gcd-algorithm some V ∈ GL2(Z) such that (a′1,2, a

′
1,3)V =

(r, 0) holds for r := gcd(a′1,2, a
′
1,3). This yields integers g, t, h such that
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(
1

V t

)
A′

(
1

V

)
=

 0 r 0
r g t

0 t h

 .

As d = −r2h and d is squarefree we have r = ±1. So let r = 1, h = −d, and thus 1
−bg/2c 1
−t 1


 1

1 g t

t h


 1 −bg/2c −t

1
1

 =

 1
1 e 0

0 −d

 ,

where e = g − 2bg/2c ∈ {0, 1}. So far we have transformed fA into 2xy + ey2 − dz2.
We are finished if e = 0.
Case e = 1. We transform 2xy +y2−dz2 into 2x̄y−dz̄2. As d is odd let −d = 1+2k.
Transforming 2xy + y2 − dz2 via x := x̄ + ky − dz yields

2x̄y + 2ky2 + y2 − 2dyz − dz2 = 2x̄y − dy2 − 2dyz − dz2 = 2x̄y − d(y + z)2.
Setting z̄ := y + z yields 2x̄y − dz̄2.

Theorem 6.2. Let d ∈ Z be odd. Then the equation 2xy − dz2 = m is solved by any
z satisfying z = m mod 2 and x := (m + dz2)/(2y) where y is an arbitrary integer
divisor of (m + dz2)/2.

Proof. For odd d we have that m + dz2 is even if and only if z = m mod 2. Hence
(m + dz2)/2 is integer and the claimed (x, y, z) is a solution.

Extensions. Ternary isotropic forms fA of odd, squarefree det A are equivalent if and
only if they coincide in det A. Moreover, CEP for such fA can be solved in poly-time
by Theorem 6.1. In particular, such fA is equivalent to 2xy− det A z2 by Theorem 6.1.
However, fA can be inequivalent to 2xy − det A z2 for even det A. For example, the
forms ax2 + by2 − cz2 and 2xy + abcz2 can be inequivalent for even abc because only
the second form is a multiple of 2 unless a, b, c are all even.

The equation 2xy − dz2 = m is unsolvable for even d and odd m. However, all
solvable instances of fA(x) = m for even, squarefree d = det A can easily be solved
given an isotropic vector.

Even when d = det A is not squarefree the equation fA(x) = m can in practice
be solved by the method of Theorems 6.1, 6.2. It is unlikely that a large squarefactor
r2 6= 1 shows up in the algorithm of Theorem 6.1.

The set of all solutions. We get all solutions (x, y, z) ∈ Z3 of 2xy − dz2 = m by
extending the solutions of Theorem 6.2 in that we allow to permute x and y and to
change the signs of x, y, z. In fact, we easily get all solutions of 2xy − dz2 = 0 given
the factorization of d.

Moreover, when we replace Z by a finite field, a finite ring or the field of real num-
bers then solving the equation fA(x) = m is relatively easy for m 6= 0. Solutions over
the ring ZN , N composite, can be found using Pollard’s algorithm [24].
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7 Characterization of isotropic and anisotropic indefinite forms

For fixed n, every n-ary form f over Z can be transformed in poly-time into a diagonal
form fT = 1

a0
f ′ = 1

a0

∑n
i=1 aix

2
i , where a0, ..., an ∈ Z and T ∈ Qn×n, det T = 1.

Then f is isotropic if and only if f ′ is isotropic. Next we characterize isotropic diagonal
forms. The form ax2 + by2 − cz2 is isotropic if and only if the Legendre equation

ax2 + by2 = cz2 (7.1)

is solvable. The equation (7.1) is in normal form if a, b, c ∈ N are positive, squarefree
and pairwise coprime. Let QRa denote the set of quadratic residues modulo a.

Theorem 7.1. (see [17], [4]) In normal form the equation (7.1) has a non-zero solution
if and only if bc ∈ QRa, ac ∈ QRb and −ab ∈ QRc , and solving (7.1) for given a, b, c
is poly-time equivalent to each of the following problems :
1. solve α2 = bc mod a, β2 = ac mod b and γ2 = −ab mod c,
2. solve equation (7.1) for a non-zero (x, y, z) ∈ Z3 such that x2 + y2 + z2 ≤ 2abc.
Theorem 7.2. [3, chap. 4.1, 4.2, lem. 2.6] An indefinite form f =

∑4
i=1 aix

2
i with

ai ∈ Z is anisotropic if and only if there exist a prime p and k ∈ N such that p2k|d,
p2k+1 6 |d for d := a1a2a3a4 and

∏
i<j(ai, aj)p = (−1)p mod 2.

The Hilbert Norm Residue Symbol (ai, aj)p ∈ {±1} equals 1 if and only if aix
2 +

ajy
2 − z2 is isotropic over Qp, the field of p-adic numbers. In particular (ai, aj)p is

poly-time, and anisotropy of f is poly-time given the factorization of det f [3, chap.
3.2]. For n ≥ 5 every indefinite n-ary form f is isotropic [19]. Anisotropic quaternary
forms f have a square-factor dividing det f .
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