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1. The Monge-Kantorovich problem

Setting

Let ξ and η be measures on Rd such that

0 < ξ(Rd ) = η(Rd ) <∞.

Let c(x , y) be the cost of transporting one unit of mass from
x ∈ Rd to y ∈ Rd .
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Problem (Monge 1781)

Minimize ∫
c(x , τ(x))ξ(dx)

among all transport maps τ : Rd → Rd satisfying τ∗(ξ) = η, that
is ∫

1{τ(x) ∈ B}ξ(dx) = η(B), B ⊂ Rd .

Such a τ is called admissable.
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Remark

If ξ and η have the same number of atoms of equal size, the
Monge Problem corresponds to optimal matching.

Remark

Admissable transports need not exist, for instance if ξ and η
have atoms of different sizes.

Remark

If ξ and η are absolutely continuous and c(x , y) = ‖x − y‖p for
some p > 1 then (under moment assumptions on ξ and η) there
is a unique solution of the Monge problem.
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Definition (Coupling)

Let Π(ξ, η) denote the set of all (finite) measures π on Rd × Rd

such that π(· × Rd ) = ξ and π(Rd × ·) = η. Any such π is called
a coupling of ξ and η.

Problem (Kantorovich 1940)

Minimize ∫
c(x , y)π(d(x , y))

among all π ∈ Π(ξ, η).
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Remark

Any π ∈ Π(ξ, η) can be identified with a stochastic kernel
T (x ,dy) from Rd to Rd such that∫

T (x ,B)ξ(dx) = η(B), B ⊂ Rd .

Such a T is called transport kernel.

Remark

If the costs are finite for some transport kernel, then there
exists a solution to the Monge-Kantorovich problem.
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2. Invariant random measures

Setting

G denotes a (multiplicative) LCSC group with Borel σ-field G,
neutral element e, Haar measure λ, and modular function ∆.

Definition

(i) Let M denote the space of all locally finite measures on G.
(ii) The σ-fieldM is the smallest σ-field of subsets of M

making the mappings µ 7→ µ(B) for all Borel sets B ∈ G
measurable.

(iii) A random measure ξ on G is a measurable mapping
ξ : Ω→ M, where (Ω,A,P) is a given σ-finite measure
space.
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Setting

Consider measurable mappings θg : Ω→ Ω, g ∈ G, satisfying
θe = idΩ and the flow property

θg ◦ θh = θgh, g,h ∈ G

The mapping (ω,g) 7→ θgω is assumed measurable. The
measure P is assumed stationary under the flow, that is

P ◦ θg = P, g ∈ G.
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Definition

A random measure ξ is invariant if

ξ(θgω,gB) = ξ(ω,B), ω ∈ Ω, g ∈ G, B ∈ G.

Definition

Let w : G→ R+ be a measurable with
∫

w(g)λ(dg) = 1. Let ξ
be an invariant random measure on G. The measure

Pξ(A) := EP

∫
1{θ−1

g ∈ A}w(g) ξ(dg), A ∈ A,

is called the Palm measure of ξ.
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3. Transport properties of Palm measures

Definition

A measurable mapping τ : Ω×G→ G is called allocation if

τ(θgω,gh) = gτ(ω,h), ω ∈ Ω, g,h ∈ G.

Definition

An allocation balances two random measures ξ and η if P-a.e.∫
1{τ(g) ∈ ·} ξ(dg) = η(·)
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Theorem (Mecke ’75, Holroyd and Peres ’05, L. and Thorisson
’09, L. 10)

Consider two invariant random measures ξ and η and let τ be
an allocation. Then τ balances ξ and η iff

EPξ
f (θ−1

τ(e))∆(τ(e)−1) = EPη f ,

for all measurable f : Ω→ R+. In particular, if G is unimodular,
this is equivalent with

Pξ(θ−1
τ(e) ∈ A) = Pη(A), A ∈ A.
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Definition

A transport-kernel is a kernel T from Ω×G to G such that
T (ω, x , ·) is a locally finite measure for all (ω,g) ∈ Ω×G which
is invariant, that is

T (θgω,gh,gB) = T (ω,h,B), g,h ∈ G, ω ∈ Ω, B ∈ B(G).

Definition

Let ξ and η be random measures. A transport kernel balances
ξ and η if ∫

T (ω, x , ·) ξ(ω,dx) = η(ω, ·) P-a.e. ω ∈ Ω.
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Theorem (Holroyd and Peres ’05, L. and Thorisson ’09)

Consider two invariant random measures ξ and η and let T be
a transport kernel. Then T is balances ξ and η iff

EPξ

∫
f (θ−1

g )∆(g−1)T (e,dg) = EPη f ,

for all measurable f : Ω→ R+.
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4. Transport formulas

Theorem (L. and Thorisson ’09)

Consider two invariant random measures ξ and η and let T and
T ∗ be transport-kernels satisfying∫∫

1{(g,h) ∈ ·}T (g,dh)ξ(dg) =

∫∫
1{(g,h) ∈ ·}T ∗(h,dg)η(dh)

P-a.e. Then we have for any measurable function
f : Ω×G→ R+ that

EPξ

∫
f (θ−1

g ,g−1)∆(g−1)T (e,dg) = EPη

∫
f (θe,g)T ∗(e,dg).
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Corollary (Neveu ’77)

Let ξ, η be invariant random measure on G. Then we have for
any measurable function f : Ω×G→ R+ that

EPξ

∫
f (θ−1

g ,g−1)∆(g−1)η(dg) = EPη

∫
f (θe,g)ξ(dg).

Corollary (mass transport principle)

Let t : Ω×G ×G→ R+ be measurable and invariant. Then

E
∫∫

1{g ∈ B}t(h,g)∆(g−1)∆(h)η(dh)ξ(dg)

= E
∫∫

1{g ∈ B}t(g,h)η(dg)ξ(dh),

for any B ∈ G with positive and finite Haar measure.
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5. Existence of balancing transport kernels

Definition

The intensity of an invariant random measure ξ is the number

E
∫

w(g) ξ(dg),

where
∫

w dλ = 1.

Definition

The invariant σ-field I ⊂ A is the class of all sets A ∈ A
satisfying θgA = A for all g ∈ G.
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Theorem

Suppose that ξ and η are invariant random measures with
positive and finite intensities. Then there exists a
transport-kernel balancing ξ and η and satisfying∫

∆(g−1)T (e,dg) = 1

iff

E[ξ(B)|I] = E[η(B)|I] P-a.e.

for some B ∈ B(G) satisfying 0 < λ(B) <∞.

Günter Last Invariant transports of random measures 17/22



6. The Mecke characterization

Theorem (Mecke ’67, Rother and Zähle ’90)

Let ξ be an invariant random measure and Q a measure on
(Ω,A). The measure Q is a Palm measure of ξ with respect to
some σ-finite stationary measure iff Q is σ-finite,
Q{ξ(G) = 0} = 0, and

EQ

∫
f (θ−1

g ,g−1)∆(g−1)ξ(dg) = EQ

∫
f (θe,g)ξ(dg)

holds for all measurable f : Ω×G→ R+.
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7. Extensions

Remark

Many of the previous results can be extended to the case of
invariant random measures on some state spaces S and T , on
which acts G in a proper way. See Kallenberg (2007,2011) and
Gentner and Last (2011).
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