Infinitely iterated Brownian motion

Takis Konstantopoulos

Mathematics department Uppsala University

(Joint work with Nicolas Curien)

This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm, as part of the

Symposium in honour of Olav Kallenberg

http://www.math.uni-frankfurt.de/~ismi/Kallenberg_symposium/

The talk was given on the blackboard. These slides were created a posteriori and represent a summary of what was presented at the symposium.

The speaker would like to thank the organizers for the invitation.

Definitions

 B_1, B_2, \ldots, B_n (standard) Brownian motions with 2-sided time *n*-fold iterated Brownian motion: $B_n(B_{n-1}(\cdots B_1(t) \cdots))$

Extreme cases: I. BMs independent of one another II. BMs identical: $B_1 = \cdots = B_n$, a.s. (self-iterated BM)

We are interested in case I.

Outline

Physical Motivation Background Previous work One-dimensional limit Multi-dimensional limit Exchangeability The directing random measure and its density Conjectures

Physical motivation

Subordination "Mixing" of time and space dimensions (c.f. relativistic processes) Branching processes Higher-order Laplacian PDEs Modern physics problems

Standard heat equation

$$\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u, \quad \text{on } D \times [0, \infty)$$
$$u(t = 0, x) = f(x)$$

is solved probabilistically by

$$u(t,x) = \mathbb{E}f(x+B(t)),$$

where B (possibly stopped) standard BM.

Higher-order Laplacian

Problems of the form

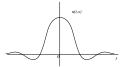
$$\begin{split} &\frac{\partial u}{\partial t} = c\Delta^2 u, \quad \text{ on } D\times [0,\infty) \\ &u(t=0,x) = f(x) \end{split}$$

arise in vibrations of membranes. Earliest attempt to solve them "probabilistically" is by Yu. V. Krylov (1960).

Caveat: Letting $D = \mathbb{R}$, f a delta function at x = 0, and taking Fourier transform with respect to x, gives

$$\widehat{u}(t,\lambda) = \exp(-\lambda^4 t)$$

whose inverse Fourier transform is not positive and so signed measures are needed. Program carried out by K. Hochberg (1978). Caveat: only finite additivity on path space is achieved.



Funaki's approach

$$\frac{\partial u}{\partial t} = \frac{1}{8} \frac{\partial^4 u}{\partial x^4}$$

with initial condition f satisfying some UTC¹, is solved by

$$(t,x) \mapsto \mathbb{E}\widetilde{f}(x + \widetilde{B}_2(B_1(t)))$$

where

$$\widetilde{B}_2(t) = B_2(t)\mathbf{1}_{t\geq 0} + \sqrt{-1}\,B_2(t)\mathbf{1}_{t<0}$$

and \tilde{f} analytic extension of f from \mathbb{R} to \mathbb{C} .

Remark: $\mathbb{E}f(x + B_2(B_1(t)))$ does not solve the original PDE [Allouba & Zheng 2001].

¹Unspecified Technical Condition–terminolgy due to Aldous

Density u(t, x) of $x + B_2(|B_1(t)|)$ satisfies a fractional PDE of the form

$$\frac{\partial^{1/2^n} u}{\partial t^{1/2^n}} = c_n \frac{\partial^2 u}{\partial x^2}.$$

[Orsingher & Beghin 2004]

Discrete index analogy

We do know several instances of compositions of discrete-index "Brownian motions" (=random walks). For example, let

$$S(t) := X_1 + \dots + X_t$$

be sum of i.i.d. nonnegative integer-valued RVs. Take S_1, S_2, \ldots be i.i.d. copies of S. Then

$$S_n(S_{n-1}(\cdots S_1(x)\cdots))$$

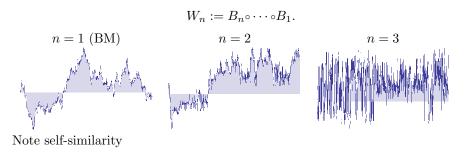
is the size of the *n*-th generation Galton-Watson process with offspring distribution the distribution of X_1 , starting from x individuals at the beginning.

Other examples...

Known results on n-fold iterated BM

- Given a sample path of $B_2 \circ B_1$, we can a.s. determine the paths of B_2 and B_1 (up to a sign) [Burdzy 1992]
- $B_n \circ \cdots \circ B_1$ is not a semimartingale; paths have finite 2^n -variation [Burdzy]
- Modulus of continuity of $B_n \circ \cdots \circ B_1$ becomes bigger as n increases [Eisenbaum & Shi 1999 for n = 2]
- As *n* increases, the paths of $B_n \circ \cdots \circ B_1$ have smaller upper functions [Bertoin 1996 for LIL and other growth results]

Path behavior



$$\left\{W_n(\alpha t), t \in \mathbb{R}\right\} \stackrel{\text{(d)}}{=} \left\{\alpha^{2^{-n}} W_n(t), t \in \mathbb{R}\right\}$$

Define occupation measure (on time interval $0 \le t \le 1$, w.l.o.g.)

$$\mu_n(A) = \int_0^1 \mathbf{1}\{W_n(t) \in A\} \, dt, \quad A \in \mathscr{B}(\mathbb{R})$$

which has density (local time): $\mu_n(A) = \int_A L_n(x) dx$. We expect that the "smoothness" of L_n increases with n [Geman & Horowitz 1980].

Problems

Does the limit (in distribution) of W_n exist, as $n \to \infty$?

If yes, what is W_{∞} ?

Does the limit of μ_n exist?

What are the properties of W_{∞} ?

Convergence of random measures

Let \mathcal{M} be the space of Radon measures on \mathbb{R} equipped with the topology of vague convergence. Let $\Omega := C(\mathbb{R})^{\mathbb{N}}$, and \mathbb{P} the \mathbb{N} -fold product of standard Wiener measures on $C(\mathbb{R})$, be the "canonical" probability space. A measurable $\lambda : \Omega \to \mathcal{M}$ is a random measure. A sequence $\{\lambda_n\}_{n=1}^{\infty}$ of random measures converges to the random measure λ weakly in the usual sense: For any $F : \mathcal{M} \to \mathbb{R}$, continuous and bounded, we have $\mathbb{E}F(\lambda_n) \to \mathbb{E}F(\lambda)$.

Equivalently [Kallenberg, Conv. of Random Measures], $\int_{\mathbb{R}} f d\lambda_n \to \int_{\mathbb{R}} f d\lambda$, weakly as random variables in \mathbb{R} , for all continous $f : \mathbb{R} \to \mathbb{R}$ with compact support ("infinite-dimensional Wold device".)

One-dimensional marginals

Let $\mathcal{E}(\lambda)$ denote an exponential random variable with rate λ and let $\pm \mathcal{E}(\lambda)$ be the product of $\mathcal{E}(\lambda)$ and an independent random sign.

Theorem

For all $t \in \mathbb{R} \setminus \{0\}$,

$$W_n(t) \xrightarrow[n \to \infty]{(d)} \pm \mathcal{E}(2),$$

Corollary

Let N_1, N_2, \ldots be i.i.d. standard normal random variables in \mathbb{R} . Then

$$\prod_{n=1}^{\infty} |N_n|^{2^{-n}} \stackrel{\text{(d)}}{=} \mathcal{E}(2).$$

This is a probabilistic manifestation of the duplication formula for the gamma function:

$$\Gamma(z) \Gamma\left(z + \frac{1}{2}\right) = 2^{1-2z} \sqrt{\pi} \Gamma(2z).$$

Higher-order marginals

Recall: W_n is 2^{-n} -self-similar.

Also: $W_n(0) = 0$ and W_n has stationary increments.

Let $-\infty < s < t < \infty$. Then

$$W_{2}(t) - W_{2}(s) = B_{2}(B_{1}(t)) - B_{2}(B_{1}(s))$$

$$\stackrel{\text{(d)}}{=} B_{1}(B_{1}(t) - B_{1}(s)) \qquad \text{(by conditioning on } B_{1})$$

$$\stackrel{\text{(d)}}{=} B_{2}(B_{1}(t-s)) = W_{2}(t-s) \qquad \text{(by conditioning on } B_{2})$$

By induction, true for all n.

Hence, for $s, t \in \mathbb{R} \setminus \{0\}$, $s \neq t$, if weak limit (X_1, X_2) of $(W_n(s), W_n(t))$ exists then it should have the properties that

$$\pm X_1 \stackrel{(\mathrm{d})}{=} \pm X_2 \stackrel{(\mathrm{d})}{=} \pm (X_2 - X_1)$$

The Markovian picture

 $\{W_n\}_{n=1}^{\infty}$ is a Markov chain with values in $C(\mathbb{R})$:

$$W_{n+1} = B_{n+1} \circ W_n.$$

However, "stationary distribution" cannot live on $C(\mathbb{R})$. Look at functionals of W_n , e.g., fix $(x_1, \ldots, x_p) \in \mathcal{R}^p$ and consider

$$\mathcal{W}_n := (W_n(x_1), \dots, W_n(x_p)).$$

Here,

$$\mathcal{R}^p := \{ (x_1, \dots, x_p) \in (\mathbb{R} \setminus \{0\})^p : x_i \neq x_j \text{ for } i \neq j \}.$$

Then $\{\mathcal{W}_n\}_{n=1}^{\infty}$ is a Markov chain in \mathcal{R}^p with transition kernel

$$\mathsf{P}(x,A) = \mathbb{P}((B(x_1),\ldots,B(x_p)) \in A), \quad x \in \mathbb{R}^p, \quad A \subset \mathcal{R}^p(\text{Borel}).$$

Theorem

 $\{\mathcal{W}_n\}_{n=1}^{\infty}$ is a positive recurrent Harris chain.

There is Lyapunov function $V : \mathcal{R}^p \to \mathbb{R}_+,$

$$V(x_1, \dots, x_p) := \max_{1 \le i \le p} |x_i| + \sum_{0 \le i < j \le p} \frac{1}{\sqrt{|x_i - x_j|}}$$

 $(x_0 := 0, \text{ by convention})$, such that, for C_1, C_2 universal positive constants,

$$(\mathsf{P} - I)V \le -C_1 \sqrt{V}, \quad \text{on } \{V > C_2\}.$$

Corollary

 $\{\mathcal{W}_n\}_{n=1}^{\infty}$ has a unique stationary distribution ν_p on \mathcal{R}^p .

The family ν_1, ν_2, \ldots is consistent:

$$\int_{\mathcal{Y}} \nu_{p+1}(dx_1 \cdots dx_{k-1} \, dy \, dx_k \cdots dx_p) = \nu_p(dx_1 \cdots dx_p).$$

Kolmogorov's extension theorem \Rightarrow there exists unique probability measure ν on $\mathbb{R}^{\mathbb{N}}$ (product σ -algebra) consistent with all the ν_p . Also, $\nu_1 \stackrel{(d)}{=} \pm \mathcal{E}(2)$.

Define $\{W_{\infty}(x), x \in \mathbb{R}\}$, a family of random variables (a random element of $\mathbb{R}^{\mathbb{N}}$ with the product σ -algebra), such that

$$(W_{\infty}(x_1),\ldots,W_{\infty}(x_p)) \stackrel{(\mathrm{d})}{=} \nu_p, \text{ whenever } x = (x_1,\ldots,x_p) \in \mathcal{R}^p,$$

letting $W_{\infty}(0) = 0$. Then

$$W_n \xrightarrow[n \to \infty]{\text{fidis}} W_\infty$$

Properties

- If x, y, 0 are distinct, $W_{\infty}(x) \stackrel{(d)}{=} W_{\infty}(y) \stackrel{(d)}{=} W_{\infty}(x) W_{\infty}(y) \stackrel{(d)}{=} \pm \mathcal{E}(2),$
- If $(x_1, \ldots, x_p) \in \mathcal{R}^p$ and $1 \le \ell \le p$, then

$$\left(W_{\infty}(x_i) - W_{\infty}(x_\ell)\right)_{\substack{1 \le i \le p \\ i \ne \ell}} \stackrel{\text{(d)}}{=} \nu_{p-1}$$

• The collection $(W_{\infty}(x), x \in \mathbb{R} \setminus \{0\})$ is an exchangeable family of random variables: its law is invariant under permutations of finitely many coordinates

By the de Finetti/Ryll-Nardzewski/Hewitt-Savage theorem [Kallenberg, Foundations of Modern Probability, Theorem 11.10], these random variables are i.i.d., conditional on the invariant σ -algebra.

Exchangeability and directing random measure

Recall that

$$\mu_n(A) = \int_0^1 \mathbf{1}\{W_n(t) \in A\} \, dt, \quad A \in \mathscr{B}(\mathbb{R})$$

occupation measure of the n-th iterated process.

Theorem

 μ_n converges weakly (in the space \mathcal{M}) to a random measure μ_∞ . Moreover, μ_∞ takes values in the set $\mathcal{M}_1 \subset \mathcal{M}$ of probability measures.

Theorem

Let μ_{∞} be a random element of \mathcal{M}_1 with distribution as specified by the weak limit above. Conditionally on μ_{∞} , let $\{V_{\infty}(x), x \in \mathbb{R} \setminus \{0\}\}$ be a collection of *i.i.d.* random variables each with distribution μ_{∞} . Then

$$\left\{W_{\infty}(x), x \in \mathbb{R} \setminus \{0\}\right\} \stackrel{\text{(fidis)}}{=} \left\{V_{\infty}(x), x \in \mathbb{R} \setminus \{0\}\right\}.$$

Intuition

Here are some non-rigorous statements:

- The limiting process ("infinitely iterated Brownian motion") is merely a collection of independent and identically distributed random variables with a random common distribution. (Exclude the origin!)
- Each W_n is short-range dependent. But the limit is long-range dependent. However, the long-range dependence is due to unknown a priori "parameter" (μ_{∞}).
- Wheras $W_n(t)$ grows, roughly, like $O(t^{1/2^n})$, for large t, the limit $W_{\infty}(t)$ is "bounded" (explanation coming up).

Properties of μ_{∞}

.

• μ_{∞} has bounded support, almost surely.

$$\widehat{\mu}_{\infty}(\omega,\xi) := \int_{\mathbb{R}} \exp(\sqrt{-1}\,\xi x)\,\mu_{\infty}(\omega,dx).$$
$$\mathbb{E}\widehat{\mu}_{\infty}(\cdot,\xi) = \int_{\Omega}\widehat{\mu}_{\infty}(\omega,\xi)\,\mathbb{P}(d\omega) = \frac{4}{4+\xi^2}.$$

• Density $L_{\infty}(\omega, x)$ of $\mu_{\infty}(\omega, dx)$ exists, for \mathbb{P} -a.e. ω .

We may think of $L_{\infty}(x)$ as the local time at level x on the time interval $0 \le t \le 1$ of the limiting "process." (This is not a rigorous statement.)

Properties of L_{∞}

- L_{∞} is a.s. continuous.
- $\int_{\mathbb{R}} L_{\infty}(x)^q \, dx < \infty$, a.s., for all $1 \le q < \infty$.
- For all small $\varepsilon > 0$, the density L_{∞} is locally $(1/2 \varepsilon)$ -Hölder continuous.

Oscillation

Let

$$\Delta_n(t) := \sup_{0 \le s, t \le t} \left| W_n(s) - W_n(t) \right|$$

be the oscillation of the *n*-th iterated process W_n on the time interval [0, t].

Theorem

The limit in distribution of the random variable $\Delta_n(t)$, as $n \to \infty$, exists and is a random variable which does not depend on t:

$$\Delta_n(t) \xrightarrow[n \to \infty]{(\mathrm{d})} \prod_{i=0}^{\infty} D_i^{2^{-i}},$$

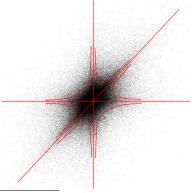
where D_0, D_1, \ldots are *i.i.d.* copies of $\Delta_1(1)$ (the oscillation of a standard BM on the time interval [0, 1].)

Joint distributions

Recall that, for $s, t \in \mathbb{R} \setminus \{0\}$, $s \neq t$, the joint law ν_2 of $(W_{\infty}(s), W_{\infty}(t))$ satisfies the remarkable property

$$\pm W_{\infty}(s) \stackrel{\text{(d)}}{=} \pm W_{\infty}(t) \stackrel{\text{(d)}}{=} \pm (W_n(s) - W_n(t)).$$

We have no further information on what this 2-dimensional law is. The following scatterplot² gives an idea of the level sets of the joint density:



²Thanks to A. Holroyd for the simulation!