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This talk was given in June 2013, at the Mittag-Leffler Institute in Stockholm,
as part of the
Symposium in honour of Olav Kallenberg
http://www.math.uni-frankfurt.de/∼ismi/Kallenberg symposium/
The talk was given on the blackboard. These slides were created a posteriori
and represent a summary of what was presented at the symposium.

The speaker would like to thank the organizers for the invitation.
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Definitions

B1, B2, . . . , Bn (standard) Brownian motions with 2-sided time

n-fold iterated Brownian motion: Bn(Bn−1(· · ·B1(t) · · · ))
Extreme cases:
I. BMs independent of one another
II. BMs identical: B1 = · · · = Bn, a.s. (self-iterated BM)

We are interested in case I.
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Physical motivation

Subordination
“Mixing” of time and space dimensions (c.f. relativistic processes)
Branching processes
Higher-order Laplacian PDEs
Modern physics problems
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Standard heat equation

∂u

∂t
=

1

2
∆u, on D × [0,∞)

u(t = 0, x) = f(x)

is solved probabilistically by

u(t, x) = Ef(x+B(t)),

where B (possibly stopped) standard BM.
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Higher-order Laplacian
Problems of the form

∂u

∂t
= c∆2u, on D × [0,∞)

u(t = 0, x) = f(x)

arise in vibrations of membranes. Earliest attempt to solve them
“probabilistically” is by Yu. V. Krylov (1960).

Caveat: Letting D = R, f a delta function at x = 0, and taking Fourier
transform with respect to x, gives

û(t, λ) = exp(−λ4t)

whose inverse Fourier transform is not positive and so signed measures are
needed. Program carried out by K. Hochberg (1978). Caveat: only finite
additivity on path space is achieved.

u(t,x)

x0
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Funaki’s approach

∂u

∂t
=

1

8

∂4u

∂x4

with initial condition f satisfying some UTC1, is solved by

(t, x) 7→ Ef̃(x+ B̃2(B1(t)))

where
B̃2(t) = B2(t)1t≥0 +

√
−1B2(t)1t<0

and f̃ analytic extension of f from R to C.

Remark: Ef(x+B2(B1(t))) does not solve the original PDE [Allouba &
Zheng 2001].

1Unspecified Technical Condition–terminolgy due to Aldous
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Fractional PDEs

Density u(t, x) of x+B2(|B1(t)|) satisfies a fractional PDE of the form

∂1/2nu

∂t1/2n
= cn

∂2u

∂x2
.

[Orsingher & Beghin 2004]
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Discrete index analogy

We do know several instances of compositions of discrete-index “Brownian
motions” (=random walks). For example, let

S(t) := X1 + · · ·+Xt

be sum of i.i.d. nonnegative integer-valued RVs. Take S1, S2, . . . be i.i.d. copies
of S. Then

Sn(Sn−1(· · ·S1(x) · · · ))
is the size of the n-th generation Galton-Watson process with offspring
distribution the distribution of X1, starting from x individuals at the
beginning.

Other examples...
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Known results on n-fold iterated BM

• Given a sample path of B2◦B1, we can a.s. determine the paths of B2 and
B1 (up to a sign) [Burdzy 1992]

• Bn◦ · · · ◦B1 is not a semimartingale; paths have finite 2n-variation
[Burdzy]

• Modulus of continuity of Bn◦ · · · ◦B1 becomes bigger as n increases
[Eisenbaum & Shi 1999 for n = 2]

• As n increases, the paths of Bn◦ · · · ◦B1 have smaller upper functions
[Bertoin 1996 for LIL and other growth results]
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Path behavior

Wn := Bn◦ · · · ◦B1.

n = 1 (BM) n = 2 n = 3

Note self-similarity

{
Wn(αt), t ∈ R} (d)

=
{
α2−n

Wn(t), t ∈ R
}

Define occupation measure (on time interval 0 ≤ t ≤ 1, w.l.o.g.)

µn(A) =

∫ 1

0

1{Wn(t) ∈ A} dt, A ∈ B(R)

which has density (local time): µn(A) =
∫
A
Ln(x)dx. We expect that the

“smoothness” of Ln increases with n [Geman & Horowitz 1980].
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Problems

Does the limit (in distribution) of Wn exist, as n → ∞?

If yes, what is W∞?

Does the limit of µn exist?

What are the properties of W∞?

Convergence of random measures
Let M be the space of Radon measures on R equipped with the topology of
vague convergence. Let Ω := C(R)N, and P the N-fold product of standard
Wiener measures on C(R), be the “canonical” probability space. A
measurable λ : Ω → M is a random measure. A sequence {λn}∞n=1 of random
measures converges to the random measure λ weakly in the usual sense: For
any F : M → R, continuous and bounded, we have EF (λn) → EF (λ).

Equivalently [Kallenberg, Conv. of Random Measures],
∫
R
fdλn →

∫
R
fdλ,

weakly as random variables in R, for all continous f : R → R with compact
support (“infinite-dimensional Wold device”.)
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One-dimensional marginals
Let E(λ) denote an exponential random variable with rate λ and let ±E(λ) be
the product of E(λ) and an independent random sign.

Theorem

For all t ∈ R \ {0},
Wn(t)

(d)−−−−→
n→∞

±E(2),

Corollary

Let N1, N2, . . . be i.i.d. standard normal random variables in R. Then

∞∏

n=1

|Nn|2
−n (d)

= E(2).

This is a probabilistic manifestation of the duplication formula for the gamma
function:

Γ(z) Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z).
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Higher-order marginals

Recall: Wn is 2−n–self-similar.

Also: Wn(0) = 0 and Wn has stationary increments.

Let −∞ < s < t < ∞. Then

W2(t)−W2(s) = B2(B1(t))−B2(B1(s))

(d)
= B1(B1(t)−B1(s)) (by conditioning on B1)

(d)
= B2(B1(t− s)) = W2(t− s) (by conditioning on B2)

By induction, true for all n.

Hence, for s, t ∈ R \ {0}, s 6= t, if weak limit (X1, X2) of (Wn(s),Wn(t)) exists
then it should have the properties that

±X1
(d)
= ±X2

(d)
= ±(X2 −X1)
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The Markovian picture

{Wn}∞n=1 is a Markov chain with values in C(R):

Wn+1 = Bn+1◦Wn.

However, “stationary distribution” cannot live on C(R).

Look at functionals of Wn, e.g., fix (x1, . . . , xp) ∈ Rp and consider

Wn := (Wn(x1), . . . ,Wn(xp)).

Here,
Rp :=

{
(x1, . . . , xp) ∈ (R \ {0})p : xi 6= xj for i 6= j

}
.

Then {Wn}∞n=1 is a Markov chain in Rp with transition kernel

P(x,A) = P((B(x1), . . . , B(xp)) ∈ A), x ∈ Rp, A ⊂ Rp(Borel).
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Theorem

{Wn}∞n=1 is a positive recurrent Harris chain.

There is Lyapunov function V : Rp → R+,

V (x1, . . . , xp) := max
1≤i≤p

|xi|+
∑

0≤i<j≤p

1√
|xi − xj |

(x0 := 0, by convention), such that, for C1, C2 universal positive constants,

(P− I)V ≤ −C1

√
V , on {V > C2}.

Corollary

{Wn}∞n=1 has a unique stationary distribution νp on Rp.
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The family ν1, ν2, . . . is consistent:

∫

y

νp+1(dx1 · · · dxk−1 dy dxk · · · dxp) = νp(dx1 · · · dxp).

Kolmogorov’s extension theorem ⇒ there exists unique probability measure ν

on R
N (product σ-algebra) consistent with all the νp. Also, ν1

(d)
= ±E(2).

Define {W∞(x), x ∈ R}, a family of random variables (a random element of
R

N with the product σ-algebra), such that

(
W∞(x1), . . . ,W∞(xp)

) (d)
= νp, whenever x = (x1, . . . , xp) ∈ Rp,

letting W∞(0) = 0. Then

Wn
fidis−−−−→
n→∞

W∞
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Properties

• If x, y, 0 are distinct, W∞(x)
(d)
= W∞(y)

(d)
= W∞(x)−W∞(y)

(d)
= ±E(2),

• If (x1, . . . , xp) ∈ Rp and 1 ≤ ℓ ≤ p, then

(
W∞(xi)−W∞(xℓ)

)
1≤i≤p
i6=ℓ

(d)
= νp−1

• The collection
(
W∞(x), x ∈ R \ {0}

)
is an exchangeable family of random

variables: its law is invariant under permutations of finitely many
coordinates

By the de Finetti/Ryll-Nardzewski/Hewitt-Savage theorem [Kallenberg,
Foundations of Modern Probability, Theorem 11.10], these random variables
are i.i.d., conditional on the invariant σ-algebra.
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Exchangeability and directing random measure

Recall that

µn(A) =

∫ 1

0

1{Wn(t) ∈ A} dt, A ∈ B(R)

occupation measure of the n-th iterated process.

Theorem

µn converges weakly (in the space M) to a random measure µ∞. Moreover,
µ∞ takes values in the set M1 ⊂ M of probability measures.

Theorem

Let µ∞ be a random element of M1 with distribution as specified by the weak
limit above. Conditionally on µ∞, let

{
V∞(x), x ∈ R \ {0}

}
be a collection of

i.i.d. random variables each with distribution µ∞. Then

{
W∞(x) , x ∈ R \ {0}

}(fidis)
=

{
V∞(x) , x ∈ R \ {0}

}
.
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Intuition

Here are some non-rigorous statements:

• The limiting process (“infinitely iterated Brownian motion”) is merely a
collection of independent and identically distributed random variables
with a random common distribution. (Exclude the origin!)

• Each Wn is short-range dependent. But the limit is long-range dependent.
However, the long-range dependence is due to unknown a priori
“parameter” (µ∞).

• Wheras Wn(t) grows, roughly, like O(t1/2
n

), for large t, the limit W∞(t)
is “bounded” (explanation coming up).
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Properties of µ∞

• µ∞ has bounded support, almost surely.

•
µ̂∞(ω, ξ) :=

∫

R

exp(
√
−1 ξx)µ∞(ω, dx).

Eµ̂∞(·, ξ) =
∫

Ω

µ̂∞(ω, ξ)P(dω) =
4

4 + ξ2
.

• Density L∞(ω, x) of µ∞(ω, dx) exists, for P-a.e. ω.

We may think of L∞(x) as the local time at level x on the time interval
0 ≤ t ≤ 1 of the limiting “process.” (This is not a rigorous statement.)
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Properties of L∞

• L∞ is a.s. continuous.

•
∫
R
L∞(x)q dx < ∞, a.s., for all 1 ≤ q < ∞.

For all small ε > 0, the density L∞ is locally (1/2− ε)–Hölder continuous.
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Oscillation

Let
∆n(t) := sup

0≤s,t≤t

∣∣Wn(s)−Wn(t)
∣∣

be the oscillation of the n-th iterated process Wn on the time interval [0, t].

Theorem

The limit in distribution of the random variable ∆n(t), as n → ∞, exists and
is a random variable which does not depend on t:

∆n(t)
(d)−−−−→

n→∞

∞∏

i=0

D2−i

i ,

where D0, D1, . . . are i.i.d. copies of ∆1(1) (the oscillation of a standard BM
on the time interval [0, 1].)
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Joint distributions
Recall that, for s, t ∈ R \ {0}, s 6= t, the joint law ν2 of (W∞(s),W∞(t))
satisfies the remarkable property

±W∞(s)
(d)
= ±W∞(t)

(d)
= ±(Wn(s)−Wn(t)).

We have no further information on what this 2-dimensional law is. The
following scatterplot2 gives an idea of the level sets of the joint density:

2Thanks to A. Holroyd for the simulation!

Takis Konstantopoulos Infinitely iterated Brownian motion




