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 A hundred years ago A.K. Erlang was working in the Copenhagen Telephone 
Company applying mathematical techniques to the analysis of the congestion problems then 
being encountered in telephone exchanges.   His first insight was that the way calls arrive 
irregularly at an exchange may be modelled as a Poisson process of random instants.   If calls 
are dealt with one at a time, each call taking an exponentially distributed time independent 
from call to call, Erlang derived a family of differential equations for the probabilities pj(t) of 
there being j calls waiting at time t, namely 

dpj/dt = - (α+β) pj + αpj-1 + βpj+1        (j = 1,2,…)                        (1)        

dp0/dt = -αp0 + βp1         . 

 This is of course what queueing theorists call the queue M/M/1, and is an example of 
the class of Markov processes known as birth and death processes.   A great deal is known of 
such things, and indeed (1) has explicit solutions [1] so long as α and β are constants.   But in 
real life the arrival rate α (and perhaps the service rate β too) will certainly change 
significantly over time.   Erlang’s derivation of (1) does not assume that the coefficients are 
constant, and to be realistic significant variation in arrival rate must be allowed [4]. 

 More generally, the usual definition of a Markov process is a random process (Xt) 
evolving with a real time parameter t, with the property that, for s < t, 

P{ Xt ϵ A | Xu (u≤s) } = P(s,t; Xs,A) 

for some function P.   Almost all treatments of this property make the further assumption that 
P depends on s and t only through the time difference t – s.   The advantage of doing so is 
that it leads to a rich and deep theory, but if probability is to be an applicable discipline we 
should acknowledge that this assumption is by no means always satisfied in applications. 

 There is no accepted terminology for the special case of time invariance, but in 
differential equation circles equations like (1) are called autonomous if the coefficients are 
constants.   I suggest that we borrow this terminology, and describe a Markov process as 
autonomous if 

P(s,t; x,A) = P(t-s; x,A)   .                                                  (2)     

The question in the title is whether there is a useful theory that does not assume that the 
Markov process is autonomous. 

 To start with the simplest case, suppose that the random variables Xt take only finitely 
many values 1,2,..,N.   Then the transition probabilities are of the form 

pij(s,t) = P { Xt  = j | Xs = i }, 



for s ≤ t, and these may be assembled into a (NxN) stochastic matrix P(s,t) which then 
satisfies the Chapman-Kolmogorov equation 

P(s,u) = P(s,t) P(t,u),    (s≤t≤u)                                                        (3) 

In this equation the time parameter may be discrete or continuous, depending on the 
application.   If for instance t takes only integer values, (3) leads to an expression for P(s,t) in 
terms of the one-step transition matrices: 

P(s,t) = P(s,s+1) P(s+1,s+2) … P(t-1,t). 

In general, the terms in this matrix product will not commute, so that an analytical expression 
for P(s,t) will not be available, but modern computers make light work of such products even 
when N is large. 

 If t is a continuous time parameter, it is natural to assume that P(s,t) is near the 
identity matrix I when t – s  is small.   This means that P is non-singular when t – s is small, 
and (3) then shows that the same is true for all s,t.   This allows us to express P in terms of a 
matrix-valued function of a single variable; for instance if 0 < s < t, 

P(s,t) = P(0,s)-1 P(0,t) . 

But the requirement that this matrix quotient have positive elements imposes complex 
restrictions on the trajectory P(0, .) , and even the obvious question of which matrices the 
trajectory can reach is unsolved. 

 In any case, the tool likely to be useful in applications is the pair of differential 
equations like (1) and its dual.   By analogy with the known results for the autonomous case, 
we may ask if there is a matrix-valued function Q of a single variable, such that 

P(s,t) = I + (t-s) Q(s) + o(t-s) ? 

If so, are the Kolmogorov differential equations 

∂P(s,t)/∂t = P(s,t)Q(t) ,       ∂P(s,t)/∂s = -Q(s)P(s,t)                           (4) 

valid?    Does Q determine P uniquely? 

 The simplest non-trivial case is that in which N=2 and return from 2 to 1 is forbidden.   
This has 

p11(s,t) = p(s,t),  p12(s,t) = 1 – p(s,t),  p21(s,t) = 0,  p22(s,t) = 1 

for some function p, and (3) shows that p(s,u) = p(s,t)p(t,u), so that  

p(s,t) = f(t)/f(s) 

for some continuous decreasing function f.   Any such function f will generate a solution of 
(3), and (4) will hold if f is differentiable, with 



q11(t) = - q12(t) =  f ‘(t)/f(t),    q21(t) = q22(t) = 0. 

But f may not be differentiable, in which case the Kolmogorov differential equations hold, if 
at all, only in a weak sense.   This example illustrates an important truth; the autonomous 
theory is a theory of generalised exponentials, while the general theory is about monotone 
functions. 

 This can be made precise by a geometrical representation.   Define a convex compact 
subset of RN as the image 

Φst = {P(s,t)x ; 0≤ x≤ 1} 

of the unit cube.   Then (3) shows that the set Φst decreases with t, and the intersection Φs is 
again convex and compact, with dimension ds	  between 1 and	  N.   This dimension increases 
with s, and thus is a constant d in 1 ≤ d ≤ N.   This geometry can be linked with results of 
Iosifescu and Cohn on the tail σ-field of the Markov process, and it turns out that this is 
atomic with exactly d  atoms.   Simple martingale arguments relate the atoms to asymptotic 
behaviour of the process, and in particular d = 1 corresponds to weak ergodicity: 

pij(s,t) – phj(s,t)  → 0     (t → ∞). 

 An important, and rather neglected, paper by G.S. Goodman contains the key to 
understanding the finite matrix solutions of (3).   He takes determinants of (3), and concludes 
that there is a continuous decreasing function g such that 

det {P(s,t)} = g(t)/g(s) 

for all s<t.   He then transforms the time scale by taking a new time variable 

t*(t) = - log g(t), 

so that the determinant becomes simply exp(s*- t*).   Finally he proves the inequality that the 
matrix P = P(s,t) always satisfies the inequality 

p11p22…pNN   ≥  det (P) > 0  .                                            (5) 

This enables him to show that the pij satisfy Lipschitz conditions, and that the Kolmogorov 
equations (4) hold almost everywhere. 

 The ‘almost everywhere’ suggests integrating the differential equations, writing for 
instance the forward equation as 

P(s,t) = I +  ∫ P(s,u) Q(u) du, 

or better 

P(s,t) = I +  ∫ P(s,u) Q(du)                                                   (6) 



where the integral extends over (s,t) and the matrix-valued measure Q in (6) is defined by its 
density Q(.).   The advantage of the second form is that it allows us to transform the time 
scale back to the original one, the measure Q transforming in the usual way.   If g is not 
differentiable, Q may no longer have a density, but it is still a non-atomic, locally finite 
matrix-valued measure.   Its off-diagonal elements are positive measures, but its row sums are 
zero, so that the diagonal elements are purely negative. 

 Conversely, if we are given locally finite, non-atomic positive measures measures qij  
(i ≠ j), we assemble these into a matrix Q, choosing the diagonal elements to make the row 
sums zero, and consider the integral equation (6).   This may be solved by a simple iterative 
procedure, and the result is a solution of the Chapman-Kolmogorov equation (3).   Thus 
Goodman’s analysis, though he did not realise this, gives a complete description of the 
general Markov process in continuous time, with finitely many states. 

 The idea that the transition intensities are naturally described by measures should be 
no surprise.   In (1) the intensity measure from j to j+1 simply gives the expected number of 
arrivals in any time interval.   In principle this can be any non-atomic measure; Erlang could 
have considered the case when calls arrive at the instants of a Cantor set. 

 Of course, the interesting problems arise when there are infinitely many states, as in 
Erlang’s example.   In the autonomous case, the infinitesimal generator is no longer a matrix 
of intensities, but in general an unbounded operator on a suitable Banach space.   However, 
the construction of a solution of (3) from intensity measures still goes through [5], so long as 
the measures –qii are dominated by some locally finite measure. 

 This condition is satisfied by M/M/1, but it is unnecessarily restrictive.   More 
generally, (6) has an iterative solution which will satisfy (3) but may have row sums strictly 
less than 1, corresponding to the possibility that the random process makes infinitely many 
jumps in finite time.   This is a phenomenon well understood in the countable case, and it 
should not be too difficult to give conditions for it to occur, for instance in the general birth 
and death process. 

 All the above discussion is relatively straightforward, with no really deep results, but 
there are deeper questions worth studying.   One of the most tantalising results in the 
autonomous theory (with a countable infinity of states) is what is sometimes called the Lévy 
dichotomy.   Suppose that pij(t) are the transition probabilities of an autonomous Markov 
process.   Then Lévy asserted, and Ornstein proved, that each function pij is either always 
zero or never zero.    It is easy to show that if pij(s) > 0, then pij(t) > 0 for t > s ; the difficult 
thing is to prove the inequality for small t .   Thus the result asserts that ‘what can ever 
happen can happen arbitrarily quickly’.   This has a full extension to processes which may not 
be autonomous, in the form of the following theorem [5], which reduces to Ornstein’s in the 
autonomous case: 

Suppose that pij(a,b) > 0, and let ε > 0.   Then there is a dissection 

a = t(0) < t(1) < t(2) < … < t(2n+1) = b 



and states k(0) = i, k(1), k(2), … , k(n+1) = j such that 

pk(r-1)k(r)(t(2r-1),t(2r)) > 0, 

and  

∑ {t(2r) – t(2r-1)} < ε  . 

In other words, there are trajectories with positive probability which are constant except on a 
(non-random) set of arbitrarily small measure. 
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