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We all know what it is like...
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After some hesitation, we either die out or increase in numbers,
until we have filled the eart. We persist, and we die out.



But branching processes teaches

that a (small) population either dies out or grows
exponentially,

that large ectinction probability does not preclude
rapid growth, where it occurs,

that there may thus well be frequent extinction
during growth,

and that the composition (age-distribution, type-,
pedigree...) stabilises during infinite growth.

But what about (real) populations that either die

out or display a long quasi-stationary phase, and
then die out?



What’s lacking in branching?

Individual reproduction -> population change ->
environment -> individual reproduction.

Each habitat (“island”) has a Carrying Capacity K
(for the species) such that reproduction turns
subcritical whenever population size Z, > K.

In discrete time, the meaning is obvious:
individuals beget children independently, given
generation size z, and the offspring mean m(z) is
a decreasing (no cooperation) function of z; m(1)
>1 and m(K) = 1.

Toy example: p,(z)=K/(K+z), p,=1-p,.

Klebaner, Sagitov, Vatutin, Haccou, and PJ in J.
Biol. Dyn. 5, 2011.



If the starting number

l, = z<K, T = time to

extinction, and T, = time to reaching size dK,

0<d<1 (the time of ascen

* At any k<dK, p,(k) = k/(K+

t), then P(T<T,) < d=.

) < dK/(K+dK) = d/(1+d).

* Hence the probability of dying out without crossing

dK must be smaller than t
binary G-W {Y, } with P(no

ne same probability for a
children) = d/(1+d). But

P.(Y, =0 before dK) < P(Y,— 0)=qg*.

 And gq=d/(d+1) + (1/(d+1)

)g?, yielding q=d.



Lingering around K

* And once in a band around K, the population
stays there for a long time, of the order e for
some c>0, with a probability that — 1, as K—
oo (Large Deviation Theory).

* |n this example c can be calculated —large
deviations for binomial r. v., (Janson),

e c=d(1-d)?/8(1+d).

* For any K, the expected time to leaving a band
(1+ 0)Kis O(eX), d = 1-d.




The time of ascent T, = O(log K) =T,
the time of descent

Z >Y._ on{T, > n}, where {Y } binary G-W
with P(no children) = d/(1+d).

Hence, dK~ ZTaZ YTa ~ W(2/(1+d))"= and

T, = O(log K).

At least for non-population-dependent
general branching processes, also T, = O(log K)

(PJ and Klebaner: On the Path to Exinction,
PNAS, 2007).



And this is what things look like in a

simulated world:
e

K=50, and not one direct extinction
among 10 simulations.



Is this behaviour general, and what
happens during the long plateau phase?

Birth during life, and/or split at death, after a life span
with an arbitrary distribution, all dependent upon
population size, in this way:

If the age structure is A=(a,, a,, ..., a,), the birth rate
of an a-aged individual is b,(a) and the death rate is

h,(a).

Litter size then is 1.

At death & (bounded) children are produced . The
distribution may depend on mother’s age at death

and on A.. Expectation and variance: m,(a), v,(a)
<00 .

Population size dependence: b,=b,, h,=h,, etc.



Markovianness

The process is Markovian in the age structure, A, = the
array of ages att, Z, =(1,A,), (f,A)=) f(a), A=(a,, ...a,).
Lf=f —h f+f(0)(b,+h,m,)

— f’'(a) reflects linear growth in age.

— h,(a) the risk of disappearing,

— b,(a) the birth intensity, resulting on a 0-aged individual, and
— h,(a)m,(a) is the splitting intensity.

Dynkin’s formula: For fe C?,

(f, A) = (FA)) + [ (Lyyf, AJ)ds + MT, where Z(s)=Z, and M',
is a local square integrable martingale (PJ & FK 2000)
In particular,

Z,=(1,A) =Zy+ [ (bzs) + hzs(My —1), Ag)ds + MF




Growth
Z,=Zy+ [of by + hygy(myg—1), A)ds + MYy
means that there is a growth trend at t iff
(bZ(t) + hz(t)(mz(t) _1), At) > O.

The most natural criticality concept is thus
criticality in the age distribution:

¢ (bZ(t) + hz(t)(mz(t) _1), At) — O.

A stronger concept is strict criticality at
population size z:

b,(a) +h,(a)(m_(a)-1) = 0 for all a.



Criticality and Monotonicity

Finally, a population can be called annealed critical
at a size z if the expected number of children during a
whole life in a population of that size is = 1.

The three concepts coincide for Bellman-Harris type
age-dependent branching processes.

We work with strict criticality at K.

Assume monotonicity in the sense that if {Z,'} and {Z},
are annealed at sizes z’< z, but start the same, then
Z' > Z, in distribution.



The risk of direct extinction

* Then, the probability of direct extinction, without
reaching dK, 0<d<1, is < q4% where:
— g4 < 1is the extinction probability of a supercritical
branching process with the fixed reproduction

determined by size dK — the annealed extinction
probability and

— z is the starting number.
* The chance of reaching dK is > 1-q?, if Z,=z.

* With m, and v, the reproduction mean and
variance. of the embedded GW-process, annealed
at pop size dK, g4 < 1-2(my,-1)/(v+m (m,-1))
(EIEREE



And otherwise:

By the assumed monotonicity in parameters, Z,
grows quicker to dK than does the process
annealed there (if it does not die out before).

Hence, the time to reach the level is O(log K).

And once there, we would still expect it to
remain for a time of order eX, K— oo, for some
c>0, by large deviation theory.

This is proved under technical assumptions in
Klebaner and PJ (Journ. Appl. Prob. 48A, 2011).



Now, let’s have a look at the population
behaviour around the carrying capacity.

Write M(R*) for the set of finite measures on R*, and
assume that

— the population starts from around K individuals: (a,, ... a,)/
K= A%, = A, as K —o0.

— the support of AXjand its total mass are bounded:
sup, inf {t>0: A%, ((t,+00))=0}<o0 and sup, A¥,<oco.

— If 4C>0;V AeM(R*) |(L,f, A)| < C(1+f,A), where C may
depend on f, then for any A, (f,A,) is integrable and its
expectation is bounded,

— All demographic parameters are uniformly bounded .

(If the population starts small it will reach any vicinity
of the carrying capacity in time O(log K) << K.)



Then:

« {AK, t> 0} is tight in D(R*, M(R")).

* Proof by Jakubowski’s criteria, compact
containment + tightness of integrals of a
separating family of continuous functions
closed under addition (coordinate tightness).



Stabilisation

* Add to earlier assumptions of boundedness of
parameters and stabilisation of the initial age
distribution AX,, as K — oo, that

* parameters are Lipschitz in the Levy-Prohorov

distance p: |b,*(u)-bg"(u)| <Cp(A/K,B/K) and

the same for h,* and m,* (Lipschitz density
dependence).

* Then, the processes AX = {Ak; t> 0} — some
A, weakly in D(R*,M(R*)), as K—o0.




What is the limit?

If u*/K=- u, then the demographic parameters

also converge: buKK — some bu etc. and so does

the infinitesimal operator corresponding to them,

LMKK =L, LMKf = f’ —hNKf+f(O)(bHK+hMKmMK).

The limit A = A satistfies

(f, A,) = (f, Ay) + [t (Lo T, A.)ds.

This is a weak form of the classical McKendrick-

von Foerster differential equation for the density
a(t,u) = A/(u) of A

(9/0t+d/du)a(t,u)=-a(t,u)h, (u), which can be

solved in special cases, I|ke when h, (u) is

constant or only depends upon | A, K



Summary

A population in a habitat that can carry a large
number of individuals K, and where
parameters stabilise as K—o0,

grows to around K in time log K

lingers there for a time e, while its age
distibution stabilises to A= A%, given by the
McKendrick-von Foerster equations,

and then it dies out in time log K (?).



