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Risk process
Ny
Xy =x+ct — Z Yn

n=1

with £ > 0, ¢ > 0. The time to ruin
T=inf{t > 0: Xy <0}
with inf & = oco. Overshoot and surplus prior to ruin.)
X+ and X, _

defined on (7 < co) only. Gerber-Shiu problem: finding the joint distribution
of (7, Xr—, X7).



Basic example: X is compound Poisson with linear drift, intensity A > 0, (Yy)
iid independent of IN.

Basic subexample: Y7, exponential rate 1 > 0. Ruin certain (Py (7 < o0) =1
for all x > 0) iff u < Ac — what is then the Py-distribution of X_7



F' the distribution of Y,
F=xFt+(1—n)F"
with 0 < w < 1, F'* a probability on ]0, oo[, F'~ a probability on ]—o0, 0]:

m
F*(dy) = > arpre #¥dy  (y>0)

r=1
withm e N, 0 < pug < -+ < py,, all p #0, > . p = 1, density > 0.
Laplace transforms

o0 m
LT (v) = /0 eVt (ds) =Y oy “J"; (Rev > 0),
r=1 Hor v

L~ (v) = /Oooe_VyF_(ds) (Rev < 0),
L(v) = nL W)+ (A —7)L"(v) (Rev <0, v#£al —pu),

L analytic extension of L.



MARTINGALE STRUCTURE: Q = 372 ; £(1;, y;,) random counting measure
on R4 X IR, compensating measure (natural filtration) A = M® F', martingales

My = [ S(59)(Qds,dy) — A(ds, dy))

Ny t
_ Els(Tn,Yn)—/\/o ds/RF(dy)S(s,y)

with each process S(-,y) predictable (here just adapted, left-continuous).
(True MG if S uniformly bounded on ]0,¢] x R x Q for all ¢ > 0).



The joint distribution of (7, X;): for 6 > 0, h : R — C suitably nice, want
MG of the form

M; = e UM (X 04) .
Can obtain (Xg =z > 0)

4
e~0mnth (X, 0p) = h(x) + /0 Veds + M;.

For t < 7, ldentify S by matching jumps, then identify V by matching deriva-
tives d /dt:

t
e~ 0mnth (X opnt) = h(z) + /O 1559 (AR (Xs) — Oh(Xs)) ds + My

with A infinitesimal generator for X,

Ah(z) = ch'(2) + A [ (h(e —y) = h(2)) F(dy) (2> 0),

h bounded, h on ]0, co[ ‘nice’, h on |—o0, 0] measurable.



For 6 > 0O, (e_e(TAt)h (XT/\,;)) is a martingale and

t>0
By [e_eTh (X7);7< oo} = h(z) (x> 0)
provided h is a partial eigenfunction for A corresponding to the eigenvalue 6,
Ah(x) = 6h(x) (x>0).

With FT as above, the desired partial eigenfunction essentially has the form

h(xz) = i dpe’& (x> 0)
k=1

where for 8 > 0 the v, = ~;(0) are the precisely m solutions ~ to the
Cramér-Lundberg equation

cy = (A+0)+AL(7) =0 (1)
with Rey < 0 and the dj, are found as the solutions to the linear system (2)
below.



Theorem 1 Let ¢ : |0, 00[ — R be bounded and measurable.

(i) For 8 >0

E [G_HTQb(—XT) T < OO} = in: dk€7k$ (ZIJ > O)

provided the solutions ~yy, to (1) are distinct and with the d;, the unique solutions
to the system

T+ kdk—lr(¢) (1<r<m) (2)

m
Z
where

I (9) = [ ure ™76 (2) d=



(i) For =0

Ex[o(—X7) ;7 < o0] = i dpe’t (x> 0)
k=1

where if c/X < EYy (ruin is certain) v1,...,%.,,—1 are the precisely m — 1
(assumed distinct) solutions to (1) with & = 0 having Re~; < 0 and ~,,, =0
while ifc/\ > EYy, (ruin is uncertain) v1, . . ., v, are the precisely m (assumed

distinct) solutions to (1) with @ = 0 having Re~y; < 0. In both cases find the
d;. by solving (2).



MORE SOPHISTICATED MODELS: MJ AAP 2005. (X,J) Markov with J
Markov chain on finite state space; between jumps X moves as a J-dependent
Brownian motion (could be degenerate); intensity for X to jump state-dependent,

J regenerates at each jump; ruin by ‘creeping’ possible.
MJ JAP 2012, (X, Z) Markov, ¢ > 0 (only ruin by jump)

t Ny
Xt:$+/()6(28)dS_ZUn,

n=1

Z-dependent jump intensity. Generator
0
Af (mv Z) — AZOf (aja ) (Z) + c(z)%f (aja Z)
+2(2) [ F(dy) [ B(dv) (f (2 = y,v) = f (2,2)).

Results of form

m
Eg » [e_QTJFCXT; T < oo} = > dp(2)e"* (x>0, all ).
k=1



GERBER-SHIU: attempt a decomposition

t
e 0T G (X rni, Xont) = gl ) + /O Vyds + M,

with M a martingale? Of course not, non-sensical!



Consider processes Z of the form

B e 9 h (Xy) (t < 1)
2t = { e 97¢g (XT_,tXT) (t>71).

Decomposition

Zy = h(z) + /O t Lr>se 7% (eh (Xs) = (A + 0) h (Xs) + Q (X5)) ds + M;

where for x > 0

Q@) = A(A=m) [ F () h(z )

+>\7T/O$F+(dy) h(x—y)+Aw[CwF+(dy) g(z,x —vy).



If h, g are bounded with A nice and
ch' (z) — (A +0)h(z) + Q(z) =0 (x>0),
then Z is a martingale and
By e g (Xr—, Xr);7 < oo| =h(z) (z>0).

With FT as before and simple choices for g, h can be found as a linear com-

bination of 2m exponentials:



Theorem 2 Let ~y,;, be the solutions to (1) as before (whether® > 0 orf = 0),
let ¢ : [0, 00] — R be bounded and measurable and let p > 0. Then

m m
Eqx [e_eT_pXT—gb (—X7);7< oo] = > dpeF+ >y Ape~BtR) (5> ()
k=1 r=1
where
. Ararly (@) p
¢t +p)p+ (A+0)p—ApL (= (py + p))
and the d;. are the unique solutions to the system

Ay

m m

Ay
> at dp= > Hr 2T (1 <r<m).
k=1 Mr T Yk ro=1 (uro + p) — Hy

Remark 3 Note that for p = 0, A\pL (— (i + p)) = —Amwarp, so Ar = 0
while i, Ar/p |p=0 = Ir ().



Example 4 Downward jumps only, exponential at rate u: m = 1, m = 1.
Ruin certain iff c/\ < 1/u and then — X+ | (7, X,_) and — X+ is exp (u).
For 6 = 0 use v = 0 so

A
(A =+ cp) (1 =+ p) p
Taking ¢ = 1,
A
By e_pX_;7'<oo]: A ( & + P 6_(“+p)$) (z > 0).
Ae+p\p+p pt+p

Result: let U 1L V, U ~ exp(u), V ~ exp(A/c). The Py-distribution of
X,-_ Is that of

V + min(U, x).

Second result: if ruin is uncertain, ¢/ > 1/u, the conditional Py-distribution
of X+_ given T < oo Is that of

U + min(V, x).



NON iid JUMPS, THE ALBRECHER-BOXMA MODEL. (X, J) Markov with

J Markov chain on finite state space. Generator

o
AT (0) = i S (00) £ 0 3 [ F5 (@) (f (@ = v.9) = £ (2.9)).

Assume Pj7 = 7Tij+ -+ (1 — 7'(']) Fj_'

m;

Ff (dy) = 3 ajopjee " dy.

r=1
Real challenge: which Cramér-Lundberg equation? Sometimes the following is
true: define
)\.
. _ J
d; (7) ciy — h\

) hij (7) = pija; (v) Lj (7)



Then for 6 > 0,

B |bre "o (= Xr)im <oo| = > a;(vk) ot (2> 0,i € E)
keK

with K an index set of v = >_j m; elements, the vy, the precisely m solutions
(assumed distinct) to the equation

det (I + H (7)) =0

with Revy < 0, (vgk)) is for each k£ a non-zero right eigenvector for the
1€l

matrix H (7, ) corresponding to the eigenvalue —1 and the 3. are the unique

solutions to the system

Z 1

ke ik Hjr + Yk

a5 (V&) U§k)5k = b1, (¢) (j €E,1<r< mj> :



