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Goal

Present framework for modelling of genealogical information of a
stochastically evolving population as a strong Markov process, i.e. the
forward picture is described.
Apply this to obtain properties of process, equilibria, parameter
dependence, path properties.
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Moran dynamics

N-individuals with types, type space K
(N-individuals at each of the sites of G)

pairs of individuals resample if at same site

(Each individual performs independently continuous time rate
a(·, ·) random walks on G.)

We can add mutation and selection.

We could work with Cannings models.
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Logistic branching random walk

particles give at rate b birth to two or 0 particles and die

particles give birth at rate s to a new particle

particles die at rate d(k), if we have k particles at the site

migration of individuals according to independent continuous time
rate a(·, ·) random walks

Assumption: x → F (x) = sx − d(x)x , concave, F (x) < 0 for x ≥ K .
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One wants to take the number of individuals (per site) to infinity and
obtain in suitable scalings:
Diffusion processes of type-frequences, respectively masses
examples:

dyt =
√

yt(1− yt)dBt Fisher-Wright

dxt = F (xt)dt +
√

bxtdBt Logistic branching
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The genealogical tree

Birth event
ι −→ ι′, ι′′

ι′, ι′′ are the descendents of ι, ι is ancestor of ι′, ι′′.
This defines:
(1) a ”genealogical tree”, a rooted labelled tree.
(2) Genealogical distance: 2 · time to MRCA

Of interest is a structure abstracting from labels.

We are interested to model the stochastic evolution of the genealogical
structure as solution to a martingale problem on a Polish space, in
particular for the diffusion limit.
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Our model for a Moran population genealogy:

U = (U, r , µ),

U =set of individuals
r : U × U −→ [0,∞), quasi ultrametric
r(ι, ι′) = genealogical distance of ι and ι′ = twice time to MRCA
µ = 1

|U| ·
∑
ι∈U

δι ∈M1(U), sampling measure

— : equivalence class under isometries and measure-preserving maps of
supp(µ) : U .

U is called an ultrametric probability space
U := {U|U is um-space}
U is a Polish space for topology introduced later.
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Our model for a logistic branching genealogy with varying population size
requires µ ∈Mfin(U).

U = (µ̄, ((U, r , µ̂)),

µ̂ ∈M1(U), µ̄ ∈ R+,

µ =
∑
ι∈U

δι , µ̄ = µ(U) , µ̂(·) = µ(·)
µ(U) .

U∗ = R+ × U (extended ultrametric probability measures)

U∗ is a Polish space
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Individuals with types and locations require:

V = K×G, K = type space, G = geographic space.
Assume that K is a compact Polish space, G finite or compact.
Mark function is added to description κ : U −→ V .
Consider (U, r , κ, µ).
Form equivalence class including mark preservation.
Obtain (extended) V -marked ultrametric probability measure spaces:

U = (U, r , κ, µ)

Allow : κ : kernel U × V , ν = µ⊗ κ : (U, r , ν)

State space: UV , respectively U∗V ultrametric probability measure spaces.

UV ,U
∗
V are Polish spaces.
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It is necessary to consider spaces G which are infinite and allow infinite
total populatin size, populations which are only ”locally” finite.

Assume: G is a metric (Polish) space. G = Zd , Rd etc.
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Infinite populations are modelled as:

U = (ν̄, (U, r , ν̂))

ν̄(·) = ν(U × (K× {·})), ν̄ ∈M(G)

ν̂(·×A) =
∑
i∈A

ν̂i (·) , ν̂i (·) =
ν(·x{i})

ν(U ×K× {i})
, ∀ i ∈ G, ν̂i ∈M1(U×K).

Gives as set of all isomorphy classes:

U∗V (Polish space)

.

A. Greven Evolution of genealogies in populations



Population models Description of genealogies: Basics Topologies on genealogies: Analytic aspects Martingale problems for genealogical processes and applications

1 Population models
Moran model (with migration)
Logistic branching random walk
Diffusion models

2 Description of genealogies: Basics
Genealogy
Moran modell size-N genealogies
Logistic branching genealogies: extended up-space
Population with types and locations: marked up-space
Extension to infinite populations

3 Topologies on genealogies: Analytic aspects
Polynomials
Topology

4 Martingale problems for genealogical processes and applications
Martingale problems
Applications

A. Greven Evolution of genealogies in populations



Population models Description of genealogies: Basics Topologies on genealogies: Analytic aspects Martingale problems for genealogical processes and applications

Polynomials are functions of the form:

Φ : U −→ R, U∗ −→ R, U∗V −→ R

(1) Φ(U) =
∫
Un

ϕ((r(ui , uj))1≤i<j≤n)µ(du1) · · ·µ(dun)

ϕ ∈ C 1
b ((R)(n

2),R) , µ ∈M1(U).
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(2) Φ(U) = Φ̄(µ̄)Φ̂((U, r , µ̂)) , Φ̄ ∈ Cb(R,R)

(3)

Φ(U) = Φ̄(ν̄)
∫

(U×V )n
ϕ((r(ui , uj))1≤i<j≤n)χ((v1, v2, · · · , vn))ν̂⊗n(d(u, v))

ν = µ⊗ κ
χ ∈ Cb(V ,R)(χ ∈ Cbb(V ,R))

We call the generated algebra of functions by Π,Π∗,ΠV .
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Define topology via convergence of sequences.

Idea: Convergence ←→ convergence of sampled (marked) subtrees and
population sizes.

Un =⇒ U as n→∞ iff

Φ(Un)−→
n→∞

Φ(U), ∀ Φ ∈ Π resp. Π∗,ΠV ,Π
∗
V .

In particular polynomials are bounded continuous functions on :

U,UV ,U∗,U∗V .
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Consider a linear operator L on Cb(E ,R), for E = U,UV , · · · with
domain a subalgebra of Π( resp. (Πv ,Π

∗
V ) of smooth functions and the

(L,Π, δU )-martingale problem

for a U∗V -valued diffusion process (UV resp. U).
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Key operator

LresΦ̂(U) =
n∑

k,`=1
k<`Un

(ϕ ◦ θk,`(r(u))− ϕ(r(u)))µ⊗n(du)

r = (r(ui , uj))1≤i<j≤n, u = (u1, · · · , un)

θk,`(r(u)) = r(uk,`) ,

uk,` = (u1, · · · , u`−1, uk , u`+1, · · · , un).
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In case of varying population size:

product rule form

L(Φ̄Φ̂) = (LmassΦ̄)Φ̂ + Φ̄ · Lgen(Φ̂)

Connects with fixed mass case (Fleming-Viot).

Lgen: time-inhomogeneous resampling/migration operators.

Conditional duality: time-inhomogeneous coalescent.
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We get

wellposed martingale problems.

Genealogical diffusion models arise as many individual per site limits.

Convergence into equilibrium states, equilibrium genealogy.

Duality theory, conditioned duality.

Coalescent representation of equilibria.

Spatial continuum limit of genealogy processes.

Almost sure path properties for qualitative features.
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Example of path property:
Consider the number of covering balls of radius
2ε of Ut :

Nε
t .

Then in path space

(
ε

2
Nε

t )t>0 =⇒ (1)t>0, as ε→ 0.
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