Kallenberg Symposium 2013

Population models Description of genealogies: Basics Topologies on genealogies: Analytic aspects OC OC OC

Evolution of genealogies in populations

A. Greven

Universität Erlangen-Nürnberg

17. Juli 2013

3 •

Joint work with

- Anita Winter (Essen)
- Andrej Depperschmidt (Freiburg)
 Peter Pfaffelhuber (Freiburg)
- Patric Glöde (Erlangen) Thomas Rippl (Erlangen)
- Chiranjib Mukherjee (München)

∃ >

Goal

Present framework for modelling of genealogical information of a stochastically evolving population as a strong Markov process, i.e. the *forward* picture is described.

Apply this to obtain properties of process, equilibria, parameter dependence, path properties.

Content

- Population models
- ② Description of genealogies
- O Topologies on genealogies
- Martingale problems for genealogical processes and applications

.⊒...>

- E - N

Population models

- Moran model (with migration)
- Logistic branching random walk
- Diffusion models
- 2 Description of genealogies: Basics
 - Genealogy
 - Moran modell size-*N* genealogies
 - Logistic branching genealogies: extended up-space
 - Population with types and locations: marked up-space
 - Extension to infinite populations
- 3 Topologies on genealogies: Analytic aspects
 - Polynomials
 - Topology
- 4 Martingale problems for genealogical processes and applications
 - Martingale problems
 - Applications

< ∃⇒

Population models

- Moran model (with migration)
- Logistic branching random walk
- Diffusion models
- - Genealogy
 - Moran modell size-N genealogies
 - Logistic branching genealogies: extended up-space
 - Population with types and locations: marked up-space
 - Extension to infinite populations
- - Polynomials
 - Topology
- - Martingale problems
 - Applications

Moran dynamics

- N-individuals with types, type space $\mathbb K$
- (*N*-individuals at each of the sites of \mathbb{G})
- pairs of individuals resample if at same site
- (Each individual performs independently continuous time rate $a(\cdot, \cdot)$ random walks on \mathbb{G} .)
- We can add mutation and selection.
- We could work with Cannings models.

Logistic branching random walk

- particles give at rate b birth to two or 0 particles and die
- particles give birth at rate s to a new particle
- particles die at rate d(k), if we have k particles at the site
- migration of individuals according to independent continuous time rate $a(\cdot, \cdot)$ random walks

Assumption: $x \to F(x) = sx - d(x)x$, concave, F(x) < 0 for $x \ge K$.

프 에 에 프 에 드 프

One wants to take the number of individuals (per site) to infinity and obtain in suitable scalings:

Diffusion processes of type-frequences, respectively *masses* examples:

$$dy_t = \sqrt{y_t(1-y_t)}dB_t$$
 Fisher-Wright

 $dx_t = F(x_t)dt + \sqrt{bx_t}dB_t$ Logistic branching

- 本臣 ト 三臣

< ∃⇒

- Moran model (with migration)
- Logistic branching random walk
- Diffusion models

2 Description of genealogies: Basics

- Genealogy
- Moran modell size-N genealogies
- Logistic branching genealogies: extended up-space
- Population with types and locations: marked up-space
- Extension to infinite populations
- - Polynomials
 - Topology
- - Martingale problems
 - Applications

The genealogical tree

Birth event $\iota \longrightarrow \iota', \iota''$ ι', ι'' are the descendents of ι, ι is ancestor of ι', ι'' . This defines: (1) a "genealogical tree", a rooted labelled tree. (2) Genealogical distance: $2 \cdot$ time to MRCA

Of interest is a structure abstracting from labels.

We are interested to model the stochastic evolution of the genealogical structure as solution to a martingale problem on a Polish space, in particular for the diffusion limit.

4 E b

Our model for a Moran population genealogy:

 $\mathcal{U}=\overline{(U,r,\mu)},$

 $\begin{array}{l} U = & \text{set of individuals} \\ r: U \times U \longrightarrow [0,\infty), \quad \text{quasi ultrametric} \\ r(\iota,\iota') = & \text{genealogical distance of } \iota \text{ and } \iota' = & \text{twice time to MRCA} \\ \mu = \frac{1}{|U|} \cdot \sum_{\iota \in U} \delta_\iota \in \mathcal{M}_1(U), \text{ sampling measure} \\ - : & \text{equivalence class under isometries and measure-preserving maps of } \\ & \text{supp}(\mu) : \mathcal{U}. \end{array}$

 \mathcal{U} is called an *ultrametric probability space* $\mathbb{U} := \{\mathcal{U} | \mathcal{U} \text{ is } um\text{-space}\}$ \mathbb{U} is a Polish space for topology introduced later.

< ∃ >

Population models **Description of genealogies: Basics** Topologies on genealogies: Analytic aspects Martingale problems for genealogical processes and O O

Our model for a logistic branching genealogy with varying population size requires $\mu \in \mathcal{M}_{fin}(U)$.

 $\mathcal{U}=(\bar{\mu},(\overline{(U,r,\hat{\mu}))},$

$$\begin{aligned} \widehat{\mu} &\in \mathcal{M}_1(U), \quad \overline{\mu} \in \mathbb{R}^+, \\ \mu &= \sum_{\iota \in U} \delta_\iota \quad , \quad \overline{\mu} = \mu(U) \quad , \quad \widehat{\mu}(\cdot) = \frac{\mu(\cdot)}{\mu(U)}. \end{aligned}$$

 $\mathbb{U}^* = \mathbb{R}^+ \times \mathbb{U}$ (extended ultrametric probability measures)

 \mathbb{U}^* is a Polish space

< ∃ >

э

Individuals with types and locations require:

 $V = \mathbb{K} \times \mathbb{G}$, \mathbb{K} = type space, \mathbb{G} = geographic space. Assume that \mathbb{K} is a compact Polish space, \mathbb{G} finite or compact. *Mark function* is added to description $\kappa : U \longrightarrow V$. Consider (U, r, κ, μ) . Form equivalence class including mark preservation. Obtain (extended) V-marked ultrametric probability measure spaces:

 $\mathcal{U} = \overline{(U, r, \kappa, \mu)}$

Allow : κ : kernel $U \times V$, $\nu = \mu \otimes \kappa : (U, r, \nu)$

State space: \mathbb{U}_V , respectively \mathbb{U}_V^* ultrametric probability measure spaces.

 \mathbb{U}_V, U_V^* are Polish spaces.

< = > < = > = <> < <>

Population models	Description of genealogies: Basics	Topologies on genealogies: Analytic aspects	Martingale problems for genealogical processes and
			00 000

It is necessary to consider spaces $\mathbb G$ which are infinite and allow infinite total populatin size, populations which are only "locally" finite.

Assume: \mathbb{G} is a metric (Polish) space. $\mathbb{G} = \mathbb{Z}^d$, \mathbb{R}^d etc.

Infinite populations are modelled as:

 $\mathcal{U} = (\bar{\nu}, \overline{(U, r, \widehat{\nu})})$

 $ar{
u}(\cdot) =
u(U imes (\mathbb{K} imes \{\cdot\})), \quad ar{
u} \in \mathcal{M}(\mathbb{G})$

$$\widehat{\nu}(\cdot \times A) = \sum_{i \in A} \widehat{\nu}_i(\cdot) \quad , \quad \widehat{\nu}_i(\cdot) = \frac{\nu(\cdot \times \{i\})}{\nu(U \times \mathbb{K} \times \{i\})}, \quad \forall \ i \in \mathbb{G}, \quad \widehat{\nu}_i \in \mathcal{M}_1(U \times \mathbb{K}).$$

Gives as set of all isomorphy classes:

\mathbb{U}_V^* (Polish space)

프) (프) 프

< ∃→

Population models

- Moran model (with migration)
- Logistic branching random walk
- Diffusion models
- 2 Description of genealogies: Basics
 - Genealogy
 - Moran modell size-N genealogies
 - Logistic branching genealogies: extended up-space
 - Population with types and locations: marked up-space
 - Extension to infinite populations

Topologies on genealogies: Analytic aspects

- Polynomials
- Topology

4 Martingale problems for genealogical processes and applications

- Martingale problems
- Applications

Polynomials are functions of the form:

$$egin{aligned} \Phi &: \mathbb{U} \longrightarrow \mathbb{R}, \quad \mathbb{U}^* \longrightarrow \mathbb{R}, \quad \mathbb{U}^*_V \longrightarrow \mathbb{R} \ (1) \quad \Phi(\mathcal{U}) &= \int\limits_{U^n} arphi((r(u_i,u_j))_{1 \le i < j \le n}) \mu(du_1) \cdots \mu(du_n) \ arphi \in C^1_b((\mathbb{R})^{\binom{n}{2}}, \mathbb{R}) \quad , \quad \mu \in \mathcal{M}_1(\mathcal{U}). \end{aligned}$$

∃ ► < ∃ ►</p>

æ

2)
$$\Phi(\mathcal{U}) = \overline{\Phi}(\overline{\mu})\widehat{\Phi}((\mathcal{U}, r, \widehat{\mu}))$$
, $\overline{\Phi} \in C_b(\mathbb{R}, \mathbb{R})$
3)
 $\Phi(\mathcal{U}) = \overline{\Phi}(\overline{\nu}) \int_{(\mathcal{U} \times V)^n} \varphi((r(u_i, u_j))_{1 \le i < j \le n}) \chi((v_1, v_2, \cdots, v_n)) \widehat{\nu}^{\otimes n}(d(\underline{u}, \underline{v}))$

$$u = \mu \otimes \kappa$$
 $\chi \in C_b(V, \mathbb{R})(\chi \in C_{bb}(V, \mathbb{R}))$

We call the generated algebra of functions by Π, Π^*, Π_V .

< ∃⇒

æ

Define topology via convergence of sequences.

 $\label{eq:convergence} \textit{Idea:} \ \text{Convergence} \ \longleftrightarrow \ \text{convergence} \ \text{of sampled} \ (\text{marked}) \ \text{subtrees} \ \text{and} \ \text{population sizes}.$

 $\mathcal{U}_n \Longrightarrow \mathcal{U}$ as $n \to \infty$ iff

$$\Phi(\mathcal{U}_n) \mathop{\longrightarrow}_{n \to \infty} \Phi(\mathcal{U}), \quad \forall \ \Phi \in \Pi \text{ resp. } \Pi^*, \Pi_V, \Pi_V^*.$$

In particular polynomials are bounded continuous functions on :

 $\mathbb{U}, \mathbb{U}_V, \mathbb{U}^*, \mathbb{U}_V^*.$

프) (프) 프

< ∃→

- Moran model (with migration)
- Logistic branching random walk
- Diffusion models
- - Genealogy
 - Moran modell size-N genealogies
 - Logistic branching genealogies: extended up-space
 - Population with types and locations: marked up-space
 - Extension to infinite populations
- - Polynomials
 - Topology

4 Martingale problems for genealogical processes and applications

- Martingale problems
- Applications

Consider a linear operator L on $C_b(E, \mathbb{R})$, for $E = \mathbb{U}, \mathbb{U}_V, \cdots$ with domain a subalgebra of $\Pi($ resp. (Π_V, Π_V^*) of smooth functions and the

 $(L, \Pi, \delta_{\mathcal{U}})$ -martingale problem

for a \mathbb{U}_V^* -valued diffusion process (\mathbb{U}_V resp. \mathbb{U}).

< ∃ →

Key operator

$$\begin{split} L_{\mathrm{res}} \widehat{\Phi}(\mathcal{U}) &= \sum_{k,\ell=1}^{n} \left(\varphi \circ \theta_{k,\ell}(\underline{r}(\underline{u})) - \varphi(\underline{r}(\underline{u})) \right) \mu^{\otimes n}(d\underline{u}) \\ \\ \underline{r} &= (r(u_i,u_j))_{1 \leq i < j \leq n}, \quad \underline{u} = (u_1,\cdots,u_n) \\ \\ \theta_{k,\ell}(\underline{r}(\underline{u})) &= \underline{r}(\underline{u}_{k,\ell}) \quad , \\ \\ \underline{u}_{k,\ell} &= (u_1,\cdots,u_{\ell-1},u_k,u_{\ell+1},\cdots,u_n). \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

æ

In case of varying population size:

product rule form $L(\bar{\Phi}\widehat{\Phi}) = (L^{\mathrm{mass}}\bar{\Phi})\widehat{\Phi} + \bar{\Phi} \cdot L^{\mathrm{gen}}(\widehat{\Phi})$

Connects with fixed mass case (Fleming-Viot).

L^{gen}: time-inhomogeneous resampling/migration operators.

Conditional duality: time-inhomogeneous coalescent.

물 위 위 물 위 이 물

Population models	Description of genealogies:	Basics	Topologies on genealogies: Analytic aspects	Martingale problems for genealogical processes and
				00 000

We get

- wellposed martingale problems.
- Genealogical diffusion models arise as many individual per site limits.
- Convergence into equilibrium states, equilibrium genealogy.
- Duality theory, conditioned duality.
- Coalescent representation of equilibria.
- Spatial continuum limit of genealogy processes.
- Almost sure path properties for qualitative features.

Example of path property: Consider the number of covering balls of radius 2ε of U_t :

Then in path space

$$(rac{arepsilon}{2}N_t^arepsilon)_{t>0} \Longrightarrow (1)_{t>0}, \quad ext{ as } arepsilon o 0.$$

 N_t^{ε} .

< ∃⇒

Bibliography

- A. Greven, P. Pfaffelhuber and A. Winter: Tree-valued resampling dynamics: Martingale problems and applications.
 PTRF, Vol. 155, Nr. 3-4, S. 789–838 (2013).
- A. Depperschmidt, A. Greven and P. Pfaffelhuber: Tree-valued Fleming-Viot dynamics with mutation and selection. Annals of Appl. Probability, Vol. 22(6), S. 2560–2615 (2012).
- A. Depperschmidt, A. Greven and P. Pfaffelhuber: Marked metric measure spaces. Elect. Comm. in Probab., Vol. 16, S. 174–188 (2011).

- A. Greven, Lea Popovic and A. Winter: Genealogy of catalytic branching models. Annals of Applied Probability, Vol. 19, Nr. 3, S. 1232–1272 (2009).
- A. Greven, P. Pfaffelhuber and A. Winter: Convergence in distribution of random metric measure spaces (The Λ-coalescent measure tree).
 PTRF, Vol. 145, Issue 1, S. 285–322 (2009).
- A. Greven and P. Glöde and T. Rippl: Stable features in genealogies of logistic branching diffusions. In preparation 2013.