
Doob-Martin boundary of Rémy’s tree growth chain

Steven N. Evans

Department of Mathematics & Department of Statistics
Group in Computational and Genomic Biology

Group in Computational Science and Engineering
University of California at Berkeley

August, 2013

Steven N. Evans Martin boundary



Collaborators

Rudolf Grübel
Hannover

Anton Wakolbinger
Frankfurt

Steven N. Evans Martin boundary



Binary trees

Write {0, 1}? :=
⊔∞

k=0{0, 1}
k for the set of finite words drawn from the

alphabet {0, 1} (with the empty word ∅ allowed).
A binary tree is a finite subset t ⊂ {0, 1}? with the properties:

v1 . . . vk ∈ t =⇒ v1 . . . vk−1 ∈ t,
v1 . . . vk0 ∈ t⇐⇒ v1 . . . vk1 ∈ t.
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Figure: A binary tree is just a finite rooted tree in which every individual has zero or
two children and we can distinguish left from right.
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Counting binary trees

Call the empty word ∅ the root of the tree.

A binary tree has 2n+ 1 vertices for some n ∈ N: n+ 1 leaves and n
interior vertices.

The number of binary trees with 2n+ 1 vertices is the Catalan number
Cn := 1

n+1

(
2n
n

)
.
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Rémy’s algorithm

Rémy’s (1985) algorithm generates a sequence of random binary trees
T1, T2, . . . such that Tn is uniformly distributed on the set of binary trees with
2n+ 1 vertices.

Start with T1 being the unique binary tree ℵ := {∅, 0, 1} with 3 vertices.

Supposing that Tn has been generated, pick a vertex v uniformly at
random.

Cut off the subtree rooted at v and set it aside.

Attach a copy of the tree ℵ with 3 vertices to the end of the edge that
previously led to v.

Re-attach the subtree rooted at v uniformly at random to one of the two
leaves in the copy of ℵ.
Call the two new vertices that have been produced clones of v.
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Example of one iteration of Rémy’s algorithm
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Figure: First step in an iteration of Rémy’s algorithm: pick a vertex v uniformly at
random.
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Example of one iteration of Rémy’s algorithm – continued

000 001 

0 

00 01 

Figure: Second step in an iteration of Rémy’s algorithm: cut off the subtree rooted at
v and attach a copy of ℵ to the end of the edge that previously led to v.
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Example of one iteration of Rémy’s algorithm – continued

000 001 

0 

00 01 
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10 11 

100 101 

1000 1001 

Figure: Third step in an iteration of Rémy’s algorithm: re-attach the subtree rooted at
v to one of the two leaves of the copy of ℵ, and re-label the vertices appropriately.
The solid circle is the new location of v and the open circles are the clones of v.
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Connections with Aldous’ Brownian CRT

Marchal (2003) showed that the Rémy trees thought of as real trees with unit
edge lengths converge almost surely in some sense to Aldous’ Brownian
continuum random tree after suitable rescaling.

Conversely, Le Gall (1999) showed that if one successively samples points in a
conditionally independent manner from the CRT using the associated mass
measure on the leaves and thinks of the trees induced by the sampled leaves
and the root as (combinatorial) binary trees, then the resulting process is
Rémy’s chain.

It follows from Hewitt-Savage that the CRT generates the tail σ-field of the
Rémy chain up to null sets. In other words, the CRT is the Poisson boundary
of the Rémy chain.
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What are the multi-step transition probabilities?

Condition on Tm.
Say that a vertex of Tm+n is a clonal descendant of a vertex v ∈ Tm if it
is v itself, a clone of v, a clone-of-a-clone of v, etc.
We can decompose Tm+n into connected pieces according to clonal
descent from the vertices of Tm.

w 

v 

x 

y 

w v 
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Tm 

Tm+n 

subtree of clonal  
descendants of x 

u 

u 
n steps of the 
Re’my chain 

Figure: Decomposition of Tm+n via clonal descent from the vertices of Tm.
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What are the multi-step transition probabilities? – continued

The numbers of clonal descendants of the 2m+ 1 vertices is the result of
n steps in a Polya urn that starts with 2m+ 1 balls of different colors and
at each stage a ball is chosen uniformly at random and replaced along with
two balls of the same color.

Conditional on the numbers of clonal descendants, the binary trees of
clonal descendants are independent and uniformly distributed.

Conditional on the trees of clonal descendants, the ancestors from Tm are
located at independently and uniformly chosen leaves of their respective
trees of clonal descendants.
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What are the multi-step transition probabilities? – continued

Label the vertices of Tm = s with 1, . . . , 2m+ 1.

The probability of evolving to Tm+n = t enhanced with a particular clonal
descent decomposition is

n!

n1! · · ·n2m+1!

∏2m+1
j=1 [1× 3× · · · × (2nj − 1)]

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

×
2m+1∏
j=1

1

Cnj

2m+1∏
j=1

1

nj + 1

=
n!

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

1

2n
.
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What are the multi-step transition probabilities? – continued

The probability p(s, t) of transitioning from s to t is thus

n!

(2m+ 1)× (2m+ 3)× · · · × (2(m+ n)− 1)

1

2n
N(s, t),

where N(s, t) is the number of ways of embedding s into t such that:

Leaves are mapped to leaves.

If u, v are vertices of s such that v is below and to the left (resp. right) of
u, then the image of v in t is below and to the left (resp. right) of the
image of u in t.
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A remark about N(s, t)

Note that an embedding of s into t is determined by the images of the leaves
of s, and so N(s, t) is just the number of subsets of cardinality m+ 1 drawn
from the n+ 1 leaves of t such that the tree induced by the chosen leaves is
isomorphic to s.

a b 

c 

s    = 

t   = 

c c 

a b 
c 

a b 

a b 
c 

a b 

c 

a b 

c 

a b 

Figure: All the embeddings of the unique binary tree s with 3 vertices into a particular
tree t with 7 vertices.
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Doob-Martin kernel

Recall that ℵ is the binary tree with 3 vertices.

If s and t are binary trees with 2m+ 1 and 2(m+ n) + 1 leaves, then the
corresponding Doob-Martin kernel is

K(s, t) :=
p(s, t)

p(ℵ, t)

=
1

P{Tm = s}P{Tm = s |Tm+n = t}

If m is fixed, and n→∞, then

K(s, t) ∼ 2m(1× 3× · · · × (2m− 1))
1

nm+1
N(s, t).

A sequence (tk)k∈N of binary trees converges in the Doob-Martin topology
if limk→∞K(s, tk) exists for all binary trees s.
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Why do we care?

We obtain an interesting compactification of the space of binary trees that
contains information about different ways in which a sequence of trees can
“go to infinity”.

All positive harmonic functions of the Rémy chain are positive linear
combinations of functions of the form s 7→ limk→∞K(s, tk).

We understand all the ways it is possible to condition the Rémy chain to
“do something at infinity” (conditioning ⇐⇒ Doob h-transforms ⇐⇒
positive harmonic functions).

There is an interesting connection with the recent theory of graph limits
developed by Lovász, Szegedy, Borgs, Chayes, Sós, Vesztergombi,
Diaconis, Janson, Tao, Austin, . . .
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Doob-Martin convergence and bridges

Given a binary tree t with 2M(t) + 1 vertices, write T t
1 , . . . , T

t
M(t) for the

bridge obtained by conditioning the Rémy chain (started at ℵ) to hit t at
time M(t).

It follows from a general remark of Föllmer (1975) that (tk)k∈N with
M(tk)→∞ converges in the Doob-Martin topology if for each ` ∈ N the
random `-tuple (T

tk
1 , . . . , T

tk
` ) converges in distribution (i.e. initial

segments of the bridge to tk converge in distribution).

The limits define an infinite bridge (T∞n )n∈N with T∞1 = ℵ.
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Doob-Martin convergence and bridges – continued

Note that if s, t are binary trees with 2m+ 1 and 2m+ 3 vertices,
respectively, then

P{T tk
m = s |T tk

m+1 = t} =
p(ℵ, s)p(s, t)p(t, tk)

p(ℵ, t)p(t, tk)

= C−1
m

1

2m+ 1

1

2
N(s, t)/C−1

m+1

=
(m+ 1)!m!

(2m)!

1

2m+ 1

1

2
N(s, t)

(2(m+ 1))!

(m+ 2)!(m+ 1)!

=
1

m+ 2
N(s, t).

Therefore, any limit bridge evolves backwards in time as follows:
Pick a leaf uniformly at random.
Delete the chosen leaf and its sibling.
Close up the gap if there is one.

To understand the Doob-Martin compactification we need to understand
all processes (T∞n )n∈N with T∞1 = ℵ that have this description.
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A simple example

tk 

Figure: The binary tree tk has 2k + 1 vertices and consists of a single spine with
leaves hanging off to the left and right alternately.
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A simple example – continued

ε1 

ε1 ε2 

ε1 ε2 ε3 

ε1 ε2 ε3 ...εn 

Figure: The value at time n of the infinite bridge arising from the sequence of trees
depicted in Figure 7. The tree consists of leaves hanging of a single spine that moves
to the left or right according to successive tosses of a fair coin.
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Another example

“leaves at infinity” 

t3 a realization of 
the infinite 
bridge at time 6 

Figure: If tk is the complete binary tree with 2k leaves, then limk tk exists in the
Doob-Martin topology and the resulting infinite bridge at time n can be built by
choosing n + 1 points uniformly from the leaves at infinity of the infinite complete
binary tree.
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Consistently labeling the leaves in an infinite bridge

Given an infinite bridge (T∞n )n∈N, it is possible (by Kolmogorov consistency) to
label the n+ 1 leaves of T∞n with {1, . . . , n+ 1} so that the following hold.

All labelings are equally likely.
In passing from T∞n+1 to T∞n :

The leaf labeled n + 2 is deleted, along with its sibling.
If the sibling of the leaf labeled n + 2 is also a leaf, then the common parent
(which is now a leaf) is assigned the sibling’s label.
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Most recent common ancestors

We want to use the labeling to build an infinite binary-tree-like structure
for which N plays the role of the leaves.
If i, j ∈ N are the labels of two leaves T∞n that are represented as the
words u1 . . . uk and v1 . . . v` in {0, 1}?, then set
[i, j]n := u1 . . . um = v1 . . . vm, where m := max{h : uh = vh}.
That is, [i, j]n is the most recent common ancestor in T∞n of the leaves
labeled i and j.

i j 

[i,j]n 
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Interior vertices

Define an equivalence relation ≡ on the Cartesian product N× N by
declaring that (i′, j′) ≡ (i′′, j′′) if and only if [i′, j′]n = [i′′, j′′]n for some
(and hence all) n such that i′, j′, i′′, j′′ ∈ [n+ 1].

Write 〈i, j〉 for the equivalence class of the pair (i, j).

Think of 〈i, j〉 as the being the most recent common ancestor of the leaves
i and j and of such points being interior vertices of a tree-like object.
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Ordering subtrees

Define a partial order <L on the set of equivalence classes by declaring for
(i′, j′), (i′′, j′′) ∈ N× N that 〈i′, j′〉 <L 〈i′′, j′′〉 if and only if for some
(and hence all) n such that i′, j′, i′′, j′′ ∈ [n+ 1] we have
[i′, j′]n = u1 . . . uk and [i′′, j′′]n = u1 . . . uk0v1 . . . v` for some
u1, . . . , uk, v1, . . . , v` ∈ {0, 1}.
Interpret the ordering 〈i′, j′〉 <L 〈i′′, j′′〉 as the “vertex” 〈i′′, j′′〉 being
below and to the left of the “vertex” 〈i′, j′〉.
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Ordering subtrees – continued

Similarly, define another partial order <R by declaring that
〈i′, j′〉 <R 〈i′′, j′′〉 if and only if for some (and hence all) n such that
i′, j′, i′′, j′′ ∈ [n+ 1] we have [i′, j′]n = u1 . . . uk and
[i′′, j′′]n = u1 . . . uk1v1 . . . v` for some u1, . . . , uk, v1, . . . , v` ∈ {0, 1}.
Interpret the ordering 〈i′, j′〉 <R 〈i′′, j′′〉 as the “vertex” 〈i′′, j′′〉 being
below and to the right of the “vertex” 〈i′, j′〉.
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Yet another partial order

Define a third partial order < on the set of equivalence classes of N×N by
declaring that 〈i′, j′〉 < 〈i′′, j′′〉 if either 〈i′, j′〉 <L 〈i′′, j′′〉 or
〈i′, j′〉 <R 〈i′′, j′′〉.
Interpret the ordering 〈i′, j′〉 < 〈i′′, j′′〉 as the “vertex” 〈i′′, j′′〉 being
below the “vertex” 〈i′, j′〉.
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Most recent common ancestors

Any two equivalence classes 〈h, i〉 and 〈j, k〉 have a unique most recent
common ancestor 〈h, i〉 ∧ 〈j, k〉: the element x of
{〈h, i〉, 〈h, j〉, 〈h, k〉, 〈i, j〉, 〈i, k〉, 〈j, k〉} such that x ≤ 〈h, i〉 and x ≤ 〈j, k〉.
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Assigning distances

For ` ∈ N, write write the equivalence class 〈`, `〉 as just `.
For h, i, j, k ∈ N, such that 〈h, i〉 < 〈j, k〉, set I` := 1{〈h, i〉 ≤ 〈j, k〉 ∧ `}
for ` ∈ N \ {h, i, j, k}.
The sequence of random variables (I`)`/∈{h,i,j,k} is exchangeable.

h i l j k 
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Assigning distances – continued

Recall we are assuming 〈h, i〉 < 〈j, k〉.
By de Finetti’s theorem and the strong law of large numbers,

d(〈h, i〉, 〈j, k〉) := lim
n→∞

1

n

∑
1≤`≤n, `/∈{h,i,j,k}

I`

exists almost surely.

Extend the definition to general pairs 〈h, i〉, 〈j, k〉 by

d(〈h, i〉, 〈j, k〉) := d(〈h, i〉, 〈h, i〉 ∧ 〈j, k〉) + d(〈h, i〉 ∧ 〈j, k〉, 〈j, k〉).
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Constructing a real tree

Unfortunately, d may be be just a pseudo-metric on the equivalence classes,
but it satisfies the four point condition

d(a, b) + d(c, d) ≤ [d(a, c) + d(b, d)] ∨ [d(a, d) + d(b, c)],

so the equivalence classes embed into a unique, minimal, complete real tree
(T, d) that is compact.

a 

b 

c 

d 
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Extending one of the partial orders

There is a unique root ρ ∈ T that is the limit of
∧

1≤i<j≤n+1〈i, j〉.
There is a partial order ≺ on T given by x ≺ y if and only if x 6= y and x
is on the segment between ρ and y.

If 〈h, i〉 ≺ 〈j, k〉, then 〈h, i〉 < 〈j, k〉.
Any two points x, y ∈ T have a unique most recent common ancestor
xf y, the furthest point z from ρ such that ρ � z � x and ρ � z � y.
For i, j ∈ N, if j = 〈i, j〉 = i ∧ j.
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Building a probability measure on the real tree

Again by exchangeability, de Finetti, and the strong law of large numbers, there
is a unique Borel probability measure µ on T such that

µ{y ∈ T : x ≺ y} = lim
n→∞

1

n
#{1 ≤ k ≤ n : x ≺ k}.

NOTE: The construction of T, d and µ is superficially similar to a construction
in a paper by Haulk & Pitman 2011 on de Finetti-like representations of
exchangeable hierarchies. They proceed more concretely by building the real
tree with its metric as a subset of `1, but applying their procedure in our
setting doesn’t always yield compact trees and the interpretation of their
measure isn’t as straightforward.
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Triplet puzzling

We have yet to incorporate the partial orders <L and <R.
Observe that the order structures <L and <R on N are completely determined
by a knowledge for all distinct i, j, k of the isomorphism class of the subtree
spanned by i, j, k.

j i i k k j i i k j j k 

i j k k j j j k k i i i 

j j k i i k k k j j i i 
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Triplet puzzling – continued

Consequently, the order structures <L and <R on N are completely determined
by a knowledge for all distinct i, j ∈ N of the distances

d(i, i ∧ j) and d(j, i ∧ j),

and whether
〈i, j〉 <L i and 〈i, j〉 <R j

or
〈i, j〉 <R i and 〈i, j〉 <R i.
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An exchangeable array

Write
Iij := 1{〈i, j〉 <L i & 〈i, j〉 <R j}.

The array of triplets

((d(i, i ∧ j), d(j, i ∧ j), Iij))i,j∈N

is exchangeable.

By the Aldous–Hoover–Kallenberg theory, there exists i.i.d. random
variables U , (Ui)i∈N, and (Uij)i,j∈N, i<j that are uniform on [0, 1] and a
function F such that

(d(i, i ∧ j), d(j, i ∧ j), Iij) = F (U,Ui, Uj , Uij),

where Uij = Uji for i > j (here < is the usual order on N).
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Forgetting about mixtures

As usual, instances in which there is dependence on the r.v. U correspond
to mixtures over extreme points in the set of infinite bridge distributions,
so we suppose there is no dependence on U .

In this case, the isomorphism type of the rooted, compact real tree (T, d)
equipped with the probability measure µ is almost surely constant, and so
we can treat (T, d, µ) as a fixed real tree equipped with a fixed probability
measure.
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Representation by sampling

If X1, X2, . . . are i.i.d. T-valued random variables distributed as µ, then
we can suppose that for some Borel bijection ϕ : T→ [0, 1] we have
Ui = ϕ(Xi).
If Iij = 1{〈i, j〉 <L i & 〈i, j〉 <R j} is representable as Ψ(Ui, Uj , Uij),
then W : T×T→ [0, 1] defined by W (x, y) = E[Ψ(ϕ(x), ϕ(y), Uij)] has
the properties:

W (x, y) = 1−W (y, x),
If z is a point whose deletion disconnects T into 3 components A, B, C,
with A containing the root, then either:
• W (x, y) = 1 for all x ∈ B and y ∈ C,
or
• W (x, y) = 0 for all x ∈ B and y ∈ C.
If x is a point whose deletion disconnects T into 2 components A, B, with
A containing the root, then:
• W (x, ·) is constant on B.
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A little more concretely ...

We can construct a realization of N with its partial orders <L and <R, and
hence the infinite bridge as follows.

Pick i.i.d. T-valued random variables X1, X2, . . . with common
distribution µ.

If the deletion of Xi disconnects T into 2 components, then toss a coin
that comes up heads with probability the common value of W (Xi, y) on
the component not containing the root.

If the coin comes up heads (resp. tails), declare 〈i, j〉 <L i and 〈i, j〉 <R j
(resp. 〈i, j〉 <R i and 〈i, j〉 <L j) for every j such that Xj falls into that
component.

If the deletion of neither Xi nor Xj disconnects T, then
W (Xi, Xj) ∈ {0, 1}. If W (Xi, Xj) = 1 (resp. 0), then
〈i, j〉 <L i & 〈i, j〉 <R j (resp. 〈i, j〉 <R i & 〈i, j〉 <L j).
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Simplest example again

tk 

Figure: The binary tree tk has 2k + 1 vertices and consists of a single spine with
leaves hanging off to the left and right alternately.
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Simplest example again – continued

Here we can take:

T to be [0, 1] with d the usual metric,

ρ to be 0,

the partial order ≺ to be the usual order on [0, 1],

xf y to be the usual minimum of x and y,

µ to be Lebesgue measure.

In this case, W (x, y) = 1
2
for xf y.
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