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Scenario and Objective

• Basic object: multitype population distributed in a random envi-
ronmental space or among colonies (demes).

• Mutation-selection dynamics and quasiequilibria of type distribu-
tions.

• Interaction among subpopulations.

• Multistage emergence and propagation of new types leading to
new quasiequilibria.

• Examples of emergence: new viral strains, invasive species, proto-
oncogenes in cell growth.

• Objective: to analyse a class of models exhibiting this behaviour
and to determine conditions under which emergence occurs and
to characterize the rate at which new types propagate.
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A Spatial Models

The Wright-Fisher two-type diffusion stepping stone model with selection

We begin with a system of subpopulations located at sites in a finite or
countable set S and given by the system of sde:

dxξ(t) = c ·
∑
ξ′∈S

qξ′,ξ(xξ′(t)− xξ(t))dt migration

+ s · xξ(t)(1− xξ(t))dt selection

+
√
γxξ(t)(1− xξ(t)) dwξ(t) genetic drift

xξ(0) ∈ [0, 1] ∀ξ ∈ S

where xξ(t) = proportion of type 1 at site ξ ∈ S at time t.
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The multitype model

Spatial multitype population with mutation and migration, haploid se-
lection and genetic drift:

• Type space: I

Ex. I = E0 ∪ E1, E0 = {1, . . . ,M}, E1 = {M + 1, . . . ,K}

• Spatial sites: S = {1, . . . , N} or countable abelian group.

• Mutation rates i → j: mi,j ,

• Migration rates ξ → ξ′ ̸= ξ: c · qξ,ξ′

• Fitness of type j: s · ej , 0 ≤ ej ≤ 1

ej = 1 if j ∈ E1, ej < 1 if j ∈ E0;

• Genetic drift: γ (“inverse population size”)
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Local mutation-selection dynamics at a site 1

The Wright-Fisher diffusion Xt(1) satisfies the G0-martingale prob-
lem where G0 acting on a C2-functions f on the simplex

∆K−1 = {(x1, . . . , xK), xi ≥ 0,
∑K

i=1 x1 = 1} = P(I) as follows:

G0f(x) =
K∑
i=1

 K∑
j=1

(mjixj −mijxi)

 ∂f(x)

∂xi
mutation

+s

K∑
i=1

xi

(
ei −

K∑
k=1

ekxk

)
∂f(x)

∂xi
selection

+
γ

2

K∑
i,j=1

xi(δijxj − xj)
∂2f(x)

∂xi∂xj
genetic drift

γ = 0 - replicator-mutator equations (e.g. Hofbauer-Sigmund)
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Spatial Model

Interacting system on a finite or countable abelian group S.

Migration rates: c · qξ′,ξ if ξ ̸= ξ′ ∈ S.

The generator for the spatial model: for f ∈ C2((∆K=1)
S)

Gspatf(x(1), . . . ,x(|S|))
=
∑
ξ∈S

G0
ξf(. . . ,x(ξ), . . . ) mutation-selection dynamics at each site

+c ·
∑
ξ∈S

 K∑
j=1

∑
ξ′∈S

qξ′,ξ xj(ξ
′)− xj(ξ)

 ∂f(x⃗)

∂xj(ξ)

 migration.

The martingale problem has a unique solution that defines a con-
tinuous strong Markov process with Feller semi-group on C((∆K−1)

S).
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Theorem 1.

(a) Assume that the initial state satisfies (x1(0), . . . ,xN (0)) is concen-
trated on E0. Then under positive mutation rates on E0 the system is
ergodic and converges to a unique equilibrium Peq on (∆|E0|−1)

S .

(b) Consider S is a countable abelian group with random walk migration
kernel and c > 0. If the fitness values of a finite transient class (wrt
mutation MC) are sufficiently large, then the class can survive (that is,
non-ergodicity). (Generalizes a result of Shiga-Uchiyama.)

Proof: Uses the set-valued dual process.

Questions

• Emergence of rare mutants (e.g. E1)

• Determination of emergence rate β.
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Exchangeable migration dynamics: (Wright’s island model)

Interacting system on N sites (islands) S = {1, . . . , N}.

Migration rates: c · qξ′,ξ = c
N−1 if ξ ̸= ξ′, c ≥ 0.

Empirical Process

We assume that the initial state satisfies (x1(0), . . . ,xN (0)) is
exchangeable.

ΞN (t) :=
1

N

N∑
j=1

δxj(t) ∈ P(P(I)).

ΞN (t) is a P(P(I))-valued Markov process.

The McKean-Vlasov equation arises as the limit dynamic as N → ∞
and the dynamics at a tagged site is a nonlinear Markov process.
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The McKean-Vlasov limit and its equilibria
Theorem 1. (Convergence in time scale O(1))

{ΞN (t)}t∈[0,T ] ⇒ (Lt)t∈[0,T ] as N → ∞

where Lt(dx) = u(t,x)dx ∈ C([0, T ],P(∆K−1)) is a weak solution of the
McKean-Vlasov equation:

∂u(t,x)

∂t
= G∗u(t,x)− c

K∑
i=1

∂

∂xi
(πi(u(t))− xi)u(t,x))

where πi(u(t)) =
∫

∆K−1

x̃iu(t, dx̃) and G∗ is the adjoint of G0.

Tagged site: ∆K−1-valued nonlinear Markov process (in the sense of
McKean).

Ergodic theorem

If E0 is irreducible and c ≥ 0, then u(t, ·) ⇒ uequil(·).
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The “equilibrium” is actually a quasi-equilibrium.

Emergence of advantageous mutants:

Assume x(0, E0) = 1, {mij} irreducible, and c ≥ 0.

E0 → E1 – rate m̄
N

G∗,m̄,Nf(x) =
m̄

N

K∑
i=M+1

 M∑
j=1

m∗
jixj

 ∂f(x)

∂xi

− m̄

N

M∑
j=1

(
K∑

i=M+1

m∗
jixj

)
∂f(x)

∂xj
.

GN = G0,N +G∗,m̄,N
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Role of migration in the emergence of the rare mutant

Macroscopic emergence iff positive density of mutant type

If c = 0, that is, without migration, macroscopic emergence occurs in
time O(N).

If c > 0, then emergence occurs in times of order O(logN):

• Microscopic emergence - Droplet process

• Macroscopic Emergence in the critical time scale
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Theorem 3 - Macroscopic emergence

(Convergence in time scale logN
β +O(1))

Assume c > 0. Then there exists β > 0 such that as N → ∞(
ΞN (

logN

β
+ t)

)
t≥− log N

β

⇒ L = (Lt)t∈(−∞,∞)

with random entrance law:

lim
t→−∞

e−βt

∫
∆K−1

µ(· ∩ E1)Lt(dµ) =
∑
j∈E1

Wjδj

where ∗W = (WM+1, . . . ,WK) is a non-negative random vector with
independent components.

Comparison with other geometries - cf. Hutzenthaler-Wakolbinger
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Elements of the proofs

• Basic tools

– Dual representation

– Set-valued dual Gt

– A Crump-Mode-Jagers branching process

– Nonlinear set-valued McKean-Vlasov dual dynamics

– Random entrance laws and relation to microscopic “droplet
process”

– Rate of emergence β given by the malthusian parameter of
the CMJ process.
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Basic tool: The dual process

The Feynman-Kac dual for a single site population (ηt,Ft):

ηt = (ζt, πt), ζt ∈ N, πt is a partition of {1, . . . , ζt}, Ft ∈ L∞(I|πt|).
|πt| has linear birth rate and quadratic death rate due to coalescence of
pairs of elements of πt.

Wright-Fisher Xt ∈ P(I). Duality relation for 0 ≤ t ≤ t0:

E[F ((η0, f), Xt)] = E(η0,F0)

{[
exp(s

t∫
0

|πr|dr)

]
·

·

[∫
I

. . .

∫
I

Ft(u1, . . . , u|πt|)X0(du1) . . . X0(du|πt|)

]}
.

Shiga (1981), D-Hochberg (1982), D-Kurtz (1982)

Problem: Not useful for studying long time behaviour t → ∞ if s > 0.
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The Set-Valued Process Gt

Type space:
I := {1, . . . ,K}

Geographic space

S = {1, . . . , N} or S = N or countable abelian group.

Local state space at a site:

T := algebra of subsets of IN

of the form A× IN, A is a subset of Im,m ∈ N

State space:

I := algebra of sets = {G ∈ T S, |G| < ∞}

|G| := min{j : ∃Sj = {s1, . . . , sj} ⊂ S : G = Gj × ((I)N)S\Sj

Gj ∈ T Sj}
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The Dual Representation

Interacting Wright-Fisher system X(t) = (x1(t), . . . ,xN (t)), xi(t) ∈
P(I), where I = {1, . . . , 2M}.

X(t) ∈ (P(I))S where S = {1, . . . , N}.

Set-valued Dual Process: Gt ∈ I

Define the function F : (P(I))S ⊗ I → [0, 1] by

F (X,G) = X∗(G)

where if X =
∏

j∈S xj , then X∗ =
∏

j∈S(xj)
N ∈ P((IN)S).

Dual Representation

EX(0)(F (X(t),G0)) = EG0(F (X(0),Gt))

Example I = {1, 2}; a, b ∈ {1, . . . , N}

EX(0)((xa(t, 1))
k1 ·(xb(t, 1))

k2) = EG0 [F (X(0),Gt)], G0 = {1}⊗k1
a ×{1}⊗k2

b
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Introduction to the set-valued dual:
Two type population (γ = 0) with selection rate s:

I = {1, 2} Type {2} has fitness 1, type {1} has fitness 0.
z(t) = E[(x(t, 2)]. z(·) satisfies the logistic differential equation

dz

dt
= sz(1− z), z(0) ∈ [0, 1]

Application of the dual The initial state of the set-valued dual is:
G0 = (01) ( indicator function of type {2}).
The action of selection is

(01) → (01) ⊗(11)
∪ (10) ⊗(01)

The dynamics is driven by a pure birth process, namely,

P (Gt = ∪n
k=0[{1}⊗k ⊗ {2}]) = e−st(1− e−st)n, n = 0, 1, 2, . . . .
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z(t) =

∞∑
n=0

e−st(1− e−st)n

(
n∑

k=0

z(0)(1− z(0))k

)

=
z(0)est

1 + z(0)(est − 1)

Case γ > 0 – Coalescence of columns

— can calculate fixation probabilities.
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Application to emergence of type 2

Assume that mutation rate 1 → 2 is m
N . Now start Gt = (10). Then

Gt = (10)⊗n(t)

where n(t) is a birth and death process with quadratic death rate.

With migration we obtain a CMJ branching process with malthusian
parameter β and emergence occurs in times of the form logN

β + t as
N → ∞.

Transition regime: from branching to the McKean-Vlasov equation

However since in this time scale collisions can occur between sites in
{1, . . . , N}, we must replace the CMJ process by an interacting system
and take the McKean-Vlasov limit - this time in the dual domain.
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Further special cases of the set-valued dual:

• Multitype Voter model on Zd (γ → ∞, no mutation)

Set-valued dual process is the product of factors undergoing ran-
dom walks with instantaneous coalescence and annihilation.

Gt =
⊗
i∈πt

Ai, Ai ⊂ I,

where πt denotes the set of occupied sites at time t in a coalescing
random walk on Zd up to annihilation (time when two disjoint
subsets coalesce).

• K = 2, γ, s → ∞. A version of the dual is a branching coalescing
random walk - cf. Biased voter model.

• Stepwise mutation model - interacting voter models (subsets of
Z) with coalescence.
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