Mittag-Leffler Institute: Olav Kallenberg Symposium

June 24-28, 2013

Multitype mutation-selection-migration dynamics and a set-valued dual

Don Dawson, Carleton University

Based on joint work with Andreas Greven

Scenario and Objective

- Basic object: multitype population distributed in a random environmental space or among colonies (demes).
- Mutation-selection dynamics and quasiequilibria of type distributions.
- Interaction among subpopulations.
- Multistage emergence and propagation of new types leading to new quasiequilibria.
- Examples of emergence: new viral strains, invasive species, protooncogenes in cell growth.
- Objective: to analyse a class of models exhibiting this behaviour and to determine conditions under which emergence occurs and to characterize the rate at which new types propagate.

A Spatial Models

The Wright-Fisher two-type diffusion stepping stone model with selection

We begin with a system of subpopulations located at sites in a finite or countable set S and given by the system of sde:

$$dx_{\xi}(t) = c \cdot \sum_{\xi' \in S} q_{\xi',\xi}(x_{\xi'}(t) - x_{\xi}(t))dt \quad \text{migration} \\ + s \cdot x_{\xi}(t)(1 - x_{\xi}(t))dt \quad \text{selection} \\ + \sqrt{\gamma x_{\xi}(t)(1 - x_{\xi}(t))} dw_{\xi}(t) \quad \text{genetic drift} \\ x_{\xi}(0) \in [0, 1] \quad \forall \xi \in S$$

where $x_{\xi}(t) = \text{proportion of type 1 at site } \xi \in S$ at time t.

The multitype model

Spatial multitype population with mutation and migration, haploid selection and genetic drift:

• Type space: \mathbb{I}

Ex. $\mathbb{I} = E_0 \cup E_1, \ E_0 = \{1, \dots, M\}, \ E_1 = \{M + 1, \dots, K\}$

- Spatial sites: $S = \{1, \ldots, N\}$ or countable abelian group.
- Mutation rates $i \to j$: $m_{i,j}$,
- Migration rates $\xi \to \xi' \neq \xi$: $c \cdot q_{\xi,\xi'}$
- Fitness of type $j: s \cdot e_j$, $0 \le e_j \le 1$

$$e_j = 1$$
 if $j \in E_1, e_j < 1$ if $j \in E_0;$

• Genetic drift: γ ("inverse population size")

Local mutation-selection dynamics at a site 1

The Wright-Fisher diffusion $X_t(1)$ satisfies the G^0 -martingale problem where G^0 acting on a C^2 -functions f on the simplex

 $\Delta_{K-1} = \{(x_1, \dots, x_K), x_i \ge 0, \sum_{i=1}^K x_1 = 1\} = \mathcal{P}(\mathbb{I})$ as follows:

$$G^{0}f(\mathbf{x}) = \sum_{i=1}^{K} \left(\sum_{j=1}^{K} (m_{ji}x_{j} - m_{ij}x_{i}) \right) \frac{\partial f(\mathbf{x})}{\partial x_{i}} \quad \text{mutation}$$
$$+s \sum_{i=1}^{K} x_{i} \left(e_{i} - \sum_{k=1}^{K} e_{k}x_{k} \right) \frac{\partial f(\mathbf{x})}{\partial x_{i}} \quad \text{selection}$$
$$+ \frac{\gamma}{2} \sum_{i,j=1}^{K} x_{i} (\delta_{ij}x_{j} - x_{j}) \frac{\partial^{2}f(x)}{\partial x_{i}\partial x_{j}} \quad \text{genetic drift}$$

 $\gamma = 0$ - replicator-mutator equations (e.g. Hofbauer-Sigmund)

Spatial Model

Interacting system on a finite or countable abelian group S.

Migration rates: $c \cdot q_{\xi',\xi}$ if $\xi \neq \xi' \in S$.

The generator for the spatial model: for $f \in C^2((\Delta_{K=1})^S)$

$$\begin{split} G^{\text{spat}} f(\mathbf{x}(1), \dots, \mathbf{x}(|S|)) \\ &= \sum_{\xi \in S} G^0_{\xi} f(\dots, \mathbf{x}(\xi), \dots) & \text{mutation-selection dynamics at each site} \\ &+ c \cdot \sum_{\xi \in S} \left[\sum_{j=1}^K \left(\sum_{\xi' \in S} q_{\xi', \xi} \, x_j(\xi') - x_j(\xi) \right) \frac{\partial f(\vec{\mathbf{x}})}{\partial x_j(\xi)} \right] & \text{migration.} \end{split}$$

The martingale problem has a unique solution that defines a continuous strong Markov process with Feller semi-group on $C((\Delta_{K-1})^S)$.

Theorem 1.

(a) Assume that the initial state satisfies $(\mathbf{x}_1(0), \ldots, \mathbf{x}_N(0))$ is concentrated on E_0 . Then under positive mutation rates on E_0 the system is ergodic and converges to a unique equilibrium \mathcal{P}_{eq} on $(\Delta_{|E_0|-1})^S$.

(b) Consider S is a countable abelian group with random walk migration kernel and c > 0. If the fitness values of a finite transient class (wrt mutation MC) are sufficiently large, then the class can survive (that is, non-ergodicity). (Generalizes a result of Shiga-Uchiyama.)

Proof: Uses the set-valued dual process.

Questions

- Emergence of rare mutants (e.g. E_1)
- Determination of emergence rate β .

Exchangeable migration dynamics: (Wright's island model)

Interacting system on N sites (islands) $S = \{1, \ldots, N\}.$

Migration rates: $c \cdot q_{\xi',\xi} = \frac{c}{N-1}$ if $\xi \neq \xi', c \ge 0$.

Empirical Process

We assume that the initial state satisfies $(\mathbf{x}_1(0), \ldots, \mathbf{x}_N(0))$ is exchangeable.

$$\Xi^{N}(t) := \frac{1}{N} \sum_{j=1}^{N} \delta_{\mathbf{x}_{j}(t)} \in \mathcal{P}(\mathcal{P}(\mathbb{I})).$$

 $\Xi^N(t)$ is a $\mathcal{P}(\mathcal{P}(\mathbb{I}))$ -valued Markov process.

The McKean-Vlasov equation arises as the limit dynamic as $N \to \infty$ and the dynamics at a tagged site is a nonlinear Markov process. $\frac{\text{The McKean-Vlasov limit and its equilibria}}{\text{Theorem 1. (Convergence in time scale } O(1))}$

$$\{\Xi^N(t)\}_{t\in[0,T]} \Rightarrow (\mathcal{L}_t)_{t\in[0,T]} \text{ as } N \to \infty$$

where $\mathcal{L}_t(dx) = u(t, \mathbf{x}) d\mathbf{x} \in C([0, T], \mathcal{P}(\Delta_{K-1}))$ is a weak solution of the *McKean-Vlasov equation*:

$$\frac{\partial u(t, \mathbf{x})}{\partial t} = G^* u(t, \mathbf{x}) - c \sum_{i=1}^K \frac{\partial}{\partial x_i} \left(\pi_i(u(t)) - x_i \right) u(t, \mathbf{x}) \right)$$

where $\pi_i(u(t)) = \int_{\Delta_{K-1}} \widetilde{x}_i u(t, d\widetilde{\mathbf{x}})$ and G^* is the adjoint of G^0 .

Tagged site: Δ_{K-1} -valued nonlinear Markov process (in the sense of McKean).

Ergodic theorem

If E_0 is irreducible and $c \ge 0$, then $u(t, \cdot) \Rightarrow u_{\text{equil}}(\cdot)$.

The "equilibrium" is actually a quasi-equilibrium.

Emergence of advantageous mutants:

Assume $x(0, E_0) = 1$, $\{m_{ij}\}$ irreducible, and $c \ge 0$.

 $E_0 \to E_1 - \text{rate } \frac{\bar{m}}{N}$

$$G^{*,\bar{m},N}f(\mathbf{x}) = \frac{\bar{m}}{N} \sum_{i=M+1}^{K} \left(\sum_{j=1}^{M} m_{ji}^{*} x_{j}\right) \frac{\partial f(\mathbf{x})}{\partial x_{i}}$$
$$-\frac{\bar{m}}{N} \sum_{j=1}^{M} \left(\sum_{i=M+1}^{K} m_{ji}^{*} x_{j}\right) \frac{\partial f(\mathbf{x})}{\partial x_{j}}.$$

$$G^N = G^{0,N} + G^{*,\bar{m},N}$$

Role of migration in the emergence of the rare mutant

Macroscopic emergence iff positive density of mutant type

If c = 0, that is, without migration, macroscopic emergence occurs in time O(N).

If c > 0, then emergence occurs in times of order $O(\log N)$:

- Microscopic emergence Droplet process
- Macroscopic Emergence in the critical time scale

Theorem 3 - Macroscopic emergence

(Convergence in time scale $\frac{\log N}{\beta} + O(1)$)

Assume c > 0. Then there exists $\beta > 0$ such that as $N \to \infty$

$$\left(\Xi^N(\frac{\log N}{\beta}+t)\right)_{t\geq -\frac{\log N}{\beta}} \Rightarrow \mathcal{L} = (\mathcal{L}_t)_{t\in(-\infty,\infty)}$$

with random entrance law:

$$\lim_{t \to -\infty} e^{-\beta t} \int_{\Delta_{K-1}} \mu(\cdot \cap E_1) \mathcal{L}_t(d\mu) = \sum_{j \in E_1} W_j \delta_j$$

where $*\mathcal{W} = (W_{M+1}, \ldots, W_K)$ is a non-negative random vector with independent components.

Comparison with other geometries - cf. Hutzenthaler-Wakolbinger

Elements of the proofs

- Basic tools
 - Dual representation
 - Set-valued dual \mathcal{G}_t
 - A Crump-Mode-Jagers branching process
 - Nonlinear set-valued McKean-Vlasov dual dynamics
 - Random entrance laws and relation to microscopic "droplet process"
 - Rate of emergence β given by the malthusian parameter of the CMJ process.

Basic tool: The dual process

The Feynman-Kac dual for a single site population (η_t, \mathcal{F}_t) :

 $\eta_t = (\zeta_t, \pi_t), \, \zeta_t \in \mathbb{N}, \, \pi_t \text{ is a partition of } \{1, \ldots, \zeta_t\}, \, \mathcal{F}_t \in L_{\infty}(\mathbb{I}^{|\pi_t|}).$ $|\pi_t|$ has linear birth rate and quadratic death rate due to coalescence of pairs of elements of π_t .

Wright-Fisher $X_t \in \mathcal{P}(\mathbb{I})$. Duality relation for $0 \leq t \leq t_0$:

$$E[F((\eta_0, f), X_t)] = E_{(\eta_0, \mathcal{F}_0)} \left\{ \left[\exp(s \int_0^t |\pi_r| dr) \right] \cdot \left[\int_{\mathbb{I}} \dots \int_{\mathbb{I}} \mathcal{F}_t(u_1, \dots, u_{|\pi_t|}) X_0(du_1) \dots X_0(du_{|\pi_t|}) \right] \right\}.$$

Shiga (1981), D-Hochberg (1982), D-Kurtz (1982)

Problem: Not useful for studying long time behaviour $t \to \infty$ if s > 0.

The Set-Valued Process \mathcal{G}_t

Type space:

$$\mathbb{I} := \{1, \dots, K\}$$

Geographic space

 $S = \{1, \dots, N\}$ or $S = \mathbb{N}$ or countable abelian group.

Local state space at a site:

 $\mathcal{T} := \text{ algebra of subsets of } \mathbb{I}^{\mathbb{N}}$ of the form $A \times \mathbb{I}^{\mathbb{N}}$, A is a subset of $\mathbb{I}^m, m \in \mathbb{N}$

State space:

 $\mathsf{I}:= \text{ algebra of sets } = \{\mathsf{G} \in \mathcal{T}^\mathsf{S}, \; |\mathsf{G}| < \infty\}$

$$|G| := \min\{j : \exists S_j = \{s_1, \dots, s_j\} \subset S : G = G_j \times ((\mathbb{I})^{\mathbb{N}})^{S \setminus S_j}$$
$$G_j \in \mathcal{T}^{S_j}\}$$

The Dual Representation

Interacting Wright-Fisher system $X(t) = (\mathbf{x}_1(t), \dots, \mathbf{x}_N(t)), \ \mathbf{x}_i(t) \in \mathcal{P}(\mathbb{I})$, where $\mathbb{I} = \{1, \dots, 2M\}$.

$$X(t) \in (\mathcal{P}(\mathbb{I}))^S$$
 where $S = \{1, \dots, N\}.$

Set-valued Dual Process: $\mathcal{G}_t \in \mathsf{I}$

Define the function $F : (\mathcal{P}(\mathbb{I}))^S \otimes \mathbb{I} \to [0, 1]$ by

 $F(X,\mathcal{G}) = X^*(\mathcal{G})$

where if $X = \prod_{j \in S} \mathbf{x}_j$, then $X^* = \prod_{j \in S} (\mathbf{x}_j)^{\mathbb{N}} \in \mathcal{P}((\mathbb{I}^{\mathbb{N}})^S)$. Dual Representation

 $E_{X(0)}(F(X(t),\mathcal{G}_0)) = E_{\mathcal{G}_0}(F(X(0),\mathcal{G}_t))$

Example $I = \{1, 2\}; a, b \in \{1, ..., N\}$

 $E_{X(0)}((x_a(t,1))^{k_1} \cdot (x_b(t,1))^{k_2}) = E_{\mathcal{G}_0}[F(X(0),\mathcal{G}_t)], \quad \mathcal{G}_0 = \{1\}_a^{\otimes k_1} \times \{1\}_b^{\otimes k_2}$

Introduction to the set-valued dual:

Two type population $(\gamma = 0)$ with selection rate s:

 $\mathbb{I} = \{1, 2\}$ Type $\{2\}$ has fitness 1, type $\{1\}$ has fitness 0.

z(t) = E[(x(t, 2)]]. $z(\cdot)$ satisfies the logistic differential equation

$$\frac{dz}{dt} = sz(1-z), \quad z(0) \in [0,1]$$

Application of the dual The initial state of the set-valued dual is: $\overline{\mathcal{G}_0} = (01)$ (indicator function of type {2}). The action of selection is

$$(01) \rightarrow \begin{array}{cc} (01) & \otimes(11) \\ \cup (10) & \otimes(01) \end{array}$$

The dynamics is driven by a pure birth process, namely,

$$P(\mathcal{G}_t = \bigcup_{k=0}^n [\{1\}^{\otimes k} \otimes \{2\}]) = e^{-st} (1 - e^{-st})^n, \quad n = 0, 1, 2, \dots$$

$$z(t) = \sum_{n=0}^{\infty} e^{-st} (1 - e^{-st})^n \left(\sum_{k=0}^n z(0)(1 - z(0))^k \right)$$
$$= \frac{z(0)e^{st}}{1 + z(0)(e^{st} - 1)}$$

 $\underline{\text{Case } \gamma > 0} - \text{Coalescence of columns}$

— can calculate fixation probabilities.

Application to emergence of type 2

Assume that mutation rate $1 \to 2$ is $\frac{m}{N}$. Now start $\mathcal{G}_t = (10)$. Then

 $\mathcal{G}_t = (10)^{\otimes n(t)}$

where n(t) is a birth and death process with quadratic death rate.

With migration we obtain a CMJ branching process with malthusian parameter β and emergence occurs in times of the form $\frac{\log N}{\beta} + t$ as $N \to \infty$.

Transition regime: from branching to the McKean-Vlasov equation

However since in this time scale collisions can occur between sites in $\{1, \ldots, N\}$, we must replace the CMJ process by an interacting system and take the McKean-Vlasov limit - this time in the dual domain.

Further special cases of the set-valued dual:

• Multitype Voter model on \mathbb{Z}^d ($\gamma \to \infty$, no mutation)

Set-valued dual process is the product of factors undergoing random walks with instantaneous coalescence and annihilation.

$$\mathcal{G}_t = \bigotimes_{i \in \pi_t} A_i, \quad A_i \subset \mathbb{I},$$

where π_t denotes the set of occupied sites at time t in a coalescing random walk on \mathbb{Z}^d up to annihilation (time when two disjoint subsets coalesce).

- $K = 2, \gamma, s \to \infty$. A version of the dual is a branching coalescing random walk cf. Biased voter model.
- Stepwise mutation model interacting voter models (subsets of Z) with coalescence.