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Scenario and Objective

Basic object: multitype population distributed in a random envi-
ronmental space or among colonies (demes).

Mutation-selection dynamics and quasiequilibria of type distribu-
tions.

Interaction among subpopulations.

Multistage emergence and propagation of new types leading to
new quasiequilibria.

Examples of emergence: new viral strains, invasive species, proto-
oncogenes in cell growth.

Objective: to analyse a class of models exhibiting this behaviour
and to determine conditions under which emergence occurs and
to characterize the rate at which new types propagate.



A Spatial Models

The Wright-Fisher two-type diffusion stepping stone model with selection

We begin with a system of subpopulations located at sites in a finite or
countable set S and given by the system of sde:

dxe(t) = c- Z qer e(Ter (1) — xe(t))dt  migration
§'es
+ 5 xe(t)(1 — xe(t))dt selection
+ \/vzg (1)(1 — xe(t)) dwe(t) genetic drift
CIZ&(O) S [O, 1] VEe S

where z¢(t) = proportion of type 1 at site £ € S at time t.



The multitype model

Spatial multitype population with mutation and migration, haploid se-
lection and genetic drift:

e Type space: I
Ex. I=FyUFE,, Eo={1,.... M}, By ={M+1,... K}
e Spatial sites: S ={1,..., N} or countable abelian group.
e Mutation rates ¢ — j:  m; j,
o Migration rates £ — & # & c-qee
e [itness of type j: s-¢; ,0<¢e; <1
e;=1itje By, e; <1ilje Ep;

e Genetic drift: v  (“inverse population size”)



Local mutation-selection dynamics at a site 1

The Wright-Fisher diffusion X;(1) satisfies the G'-martingale prob-
lem where G acting on a C?-functions f on the simplex

A1 ={(x1,...,2K), T; > O,Zfil r1 =1} = P(I) as follows:

K K

G f(x) = (myix; — ma;) 8£(X) mutation
=1 71=1 Li
K K (x)
i lecti
+5 ;x ( ; ) o, selection
0 0° f () -
—|—§ Z T; 523% J)m genetic drift

1,7=1

Q.

v = 0 - replicator-mutator equations (e.g. Hofbauer-Sigmund)



Spatial Model

Interacting system on a finite or countable abelian group S.

Migration rates: c¢-qer ¢ if € #£E& € S.

The generator for the spatial model: for f € C?((Ax—=1)")

GP? f(x(1),...,x(]S]))

= > Gf(...x(),...)

£es
K
te 1D
EeS | =1 \¢eS

of (X)
Ox;(§)

mutation-selection dynamics at each site

migration.

The martingale problem has a unique solution that defines a con-
tinuous strong Markov process with Feller semi-group on C((Ax_1)%).



Theorem 1.

(a) Assume that the initial state satisfies (x1(0),...,xn(0)) is concen-
trated on Fy. Then under positive mutation rates on Ey the system is
ergodic and converges to a unique equilibrium P,, on (4, E0|—1)S :

(b) Consider S is a countable abelian group with random walk migration
kernel and ¢ > 0. If the fitness values of a finite transient class (wrt
mutation MC) are sufficiently large, then the class can survive (that is,
non-ergodicity). (Generalizes a result of Shiga-Uchiyama.)

Proof: Uses the set-valued dual process.

Questions

e Emergence of rare mutants (e.g. E7)

e Determination of emergence rate S3.



Exchangeable migration dynamics: (Wright’s island model)

Interacting system on N sites (islands) S = {1,..., N}.
Migration rates: c¢-qe ¢ = w7 if { # &', ¢ > 0.

Empirical Process

We assume that the initial state satisfies (x1(0),...,xx(0)) is
exchangeable.

[1]

N(0) = 1 3 e € PPD),

=N(t) is a P(P(I))-valued Markov process.

The McKean-Vlasov equation arises as the limit dynamic as N — oo
and the dynamics at a tagged site is a nonlinear Markov process.



The McKean-Vlasov limit and its equilibria
Theorem 1. (Convergence in time scale O(1))

{EN(t)}te[O,T] =4 (ﬁt)te[o,T] as N — oo

where L;(dx) = u(t,x)dx € C(|0,T], P(Ax_1)) is a weak solution of the
McKean-Viasov equation:

P Gl e o (o) - 5 ult0)

where m;(u(t)) = [ Z;u(t,dx) and G* is the adjoint of G°.
Ag_1

Tagged site: Ak _i-valued nonlinear Markov process (in the sense of
McKean).

Ergodic theorem

If Fy is irreducible and ¢ > 0, then u(t, ) = Uequil(-)-



The “equilibrium” is actually a quasi-equilibrium.

Emergence of advantageous mutants:

Assume z(0, Ey) = 1, {m,;} irreducible, and ¢ > 0.

Eo — Ey — rate %




Role of migration in the emergence of the rare mutant

Macroscopic emergence iff positive density of mutant type
If ¢ = 0, that is, without migration, macroscopic emergence occurs in

time O(NV).

If ¢ > 0, then emergence occurs in times of order O(log N):
e Microscopic emergence - Droplet process

e Macroscopic Emergence in the critical time scale
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Theorem 3 - Macroscopic emergence

(Convergence in time scale IOgTN + O(1))

Assume ¢ > 0. Then there exists § > 0 such that as N — oo

_~n, log N
(=B +0) == e

B

with random entrance law:

lim e_ﬁt/A u(- N E)Le(dp) = Z W;d;
K-—1

t——o00
Jje k1

where *W = (Wyri1,...,Wgk) is a non-negative random vector with
independent components.

Comparison with other geometries - cf. Hutzenthaler-Wakolbinger
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Elements of the proofs

e Basic tools

— Dual representation

— Set-valued dual G;

— A Crump-Mode-Jagers branching process

— Nonlinear set-valued McKean-Vlasov dual dynamics

— Random entrance laws and relation to microscopic “droplet
process”

— Rate of emergence ( given by the malthusian parameter of
the CM.J process.
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Basic tool: The dual process

The Feynman-Kac dual for a single site population (1, F3):

ne = ((,m), G €N, m, is a partition of {1,...,¢}, Fr € Loo (1™,
|7¢| has linear birth rate and quadratic death rate due to coalescence of
pairs of elements of ;.

Wright-Fisher X; € P(I). Duality relation for 0 <t < tg:

E[F((no, f), X¢)| = E(no,}"o){ [exp(S/de)]-

.[/.../ft(ul,...,um)Xo(dul)...Xo(dum)]}.

I

Shiga (1981), D-Hochberg (1982), D-Kurtz (1982)

Problem: Not useful for studying long time behaviour ¢ — oo if s > 0.
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The Set-Valued Process G;

Type space:
[:={1,...,K}

Geographic space
S={1,...,N} or S =N or countable abelian group.
Local state space at a site:

T := algebra of subsets of TN
of the form A x IV, A is a subset of I, m € N

State space:

| := algebra of sets = {G € T°, |G| < oo}

|G‘ = mln{j . HS] = {81, . .,Sj} C S . G = Gj X ((H)N)S\Sj
Gj S Tsj}

15



The Dual Representation

Interacting Wright-Fisher system X (¢) = (x1(¢),...,xn(t)), x;(t) €
P(I), where I = {1,...,2M}.

X(t) € (P(I))® where S = {1,...,N}.
Set-valued Dual Process: G; € |
Define the function F : (P(I))° ® | — [0,1] by
F(X,G) = X*(9)
where if X = [[,cg%;, then X* =[] _q(x;)" € P((I")*).

Dual Representation

Ex0)(F(X(t),G0)) = Eg,(F(X(0),G))
Example I = {1,2}; a,b € {1,..., N}

Ex o) (o (t, 1)) -(z5(t, 1)) = Eg, [F(X(0),G)],  Go = {115 x {1}
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Introduction to the set-valued dual:
Two type population (v = 0) with selection rate s:
I={1,2} Type {2} has fitness 1, type {1} has fitness 0.
2(t) = E|(x(t,2)]. z(-) satisfies the logistic differential equation

d
d—i =sz(1—2), z(0)e€]0,1]
Application of the dual The initial state of the set-valued dual is:

Go = (01) ( indicator function of type {2}).
The action of selection is

(01) ®(11)

OD = [ (10) @(01)

The dynamics is driven by a pure birth process, namely,

PG =l {11 @ {2)]) = e (1 —e )", n=0,1,2,....
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Z(t) _ Z e—st(l . e—st)n (

n=0
z(0)es
14+ z(0)(est — 1)

Case v > 0 — Coalescence of columns

— can calculate fixation probabilities.

18



Application to emergence of type 2

Assume that mutation rate 1 — 2 is 5;. Now start G; = (10). Then

G, = (10)@”(@
where n(t) is a birth and death process with quadratic death rate.
With migration we obtain a CMJ branching process with malthusian

parameter S and emergence occurs in times of the form IO%N + t as
N — oo.

Transition regime: from branching to the McKean-Vlasov equation

However since in this time scale collisions can occur between sites in
{1,..., N}, we must replace the CMJ process by an interacting system
and take the McKean-Vlasov limit - this time in the dual domain.
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Further special cases of the set-valued dual:

e Multitype Voter model on Z? (v — oo, no mutation)

Set-valued dual process is the product of factors undergoing ran-
dom walks with instantaneous coalescence and annihilation.

gt:®Ai, AiCH,

1ET

where m; denotes the set of occupied sites at time ¢ in a coalescing
random walk on Z¢ up to annihilation (time when two disjoint
subsets coalesce).

e K =2 7,5 — o0o. A version of the dual is a branching coalescing
random walk - cf. Biased voter model.

e Stepwise mutation model - interacting voter models (subsets of
7)) with coalescence.
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