

Monotonicity-based regularization of inverse coefficient problems

Bastian Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

Department of Mathematics, City University of Hong Kong Hong Kong, February 21, 2025.

EIT and the Calderón problem

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla u) = 0, \quad x \in \Omega$$
 (1)

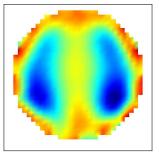
from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial \Omega} = g$.



- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject.

Generic approaches

Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial\Omega} = g$.

Linearize and regularize:

$$\Lambda_{\text{meas}} \approx \Lambda(\sigma) \approx \Lambda(\sigma_0) + \Lambda'(\sigma_0)(\sigma - \sigma_0).$$

 $(\sigma_0$: Initial guess or reference state e.g. exhaled state)

- → Regularize linearized problem (& repeat for Newton-type algorithm.)
- Regularize and linearize:

Consider non-linear Tikhonov functional, e.g.,

$$\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \text{min!}$$

and minimize by linearization (e.g., gradient-based or Newton-type methods)

Generic approaches

Advantages of generic optimization-based solvers:

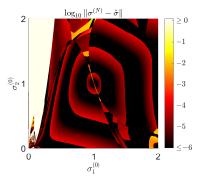
- Very flexible, additional data/unknowns easily incorporated
- Problem-specific regularization can be applied
 (e.g., total variation penalization, stochastic priors, learning-based techniques, ...)

Problems with generic optimization-based solvers

- High computational cost (real-time imaging?)
 - Evaluations of $\Lambda(\cdot)$ and $\Lambda'(\cdot)$ require PDE solutions.
 - Iterative approaches typically require many evaluations
- Global convergence? Resolution?
 - Newton-type approaches highly depend on initial guess
 - Convergence of nonlinear Tikhonov requires global minimization
 - ▶ Resolution estimates & stability for realistic noise?

Problem of non-linearity / local convergence

Error of standard solver (Matlab's lsqnonlin) w.r.t. initial value: (for simple 2D Calderón problem with 2 unknowns and 3 measurements)



Can we develop fast and globally convergent algorithms?

This talk: Fast and globally convergent method for inclusion detection

Monotonicity-based methods

Monotonicity w.r.t. Loewner order

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \le \sigma_1 \implies \Lambda(\sigma_0) \ge \Lambda(\sigma_1)$$

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$

where $u_0 \in H^1_{\diamond}(\Omega)$ solves

$$\nabla \cdot (\boldsymbol{\sigma}_0 \nabla u_0) = 0, \quad \boldsymbol{\sigma}_0 \partial_{\nu} u_0|_{\partial \Omega} = g.$$

Converse monotonicity relations can be shown by controlling $|\nabla u_0|^2$ (Localized Potentials: **H.**, Inverse Probl. Imaging 2008)

Theoretical consequences

Monotonicity & localized potentials yield uniqueness results:

Non-linear Calderón problem: (Kohn/Vogelius 1985, H./Seo 2010) If $\sigma_1 \in L^\infty_+(\Omega)$ fulfills (UCP) and $\sigma_2 - \sigma_1$ is pcw. analytic then

$$\Lambda(\sigma_1) = \Lambda(\sigma_2)$$
 implies $\sigma_1 = \sigma_2$.

Linearized Calderón problem: (H./Seo 2010) If $\sigma_1 \in L^{\infty}_+(\Omega)$ fulfills (UCP) and $\kappa \in L^{\infty}(\Omega)$ is pcw. analytic then

$$\Lambda'(\sigma_1)\kappa = 0$$
 implies $\kappa = 0$.

Calderón problem with finitely many measurements:

(Linearized: Lechleiter/Rieder 2008, Non-linear: H. 2019)
Using sufficiently many electrodes (CEM) uniquely determines conductivity up to desired finite resolution (and Lipschitz stability holds).

Monotonicity method for inclusion detection

Simple inclusion detection problem (for ease of presentation)

- $\sigma_0 = 1$
- ▶ D open, $\overline{D} \subseteq \Omega$, $\Omega \setminus \overline{D}$ connected

All of the following also holds for

- \bullet σ_0 pcw. analytic and known,
- $\sigma_1 = \sigma_0 + \kappa \chi_D$ with $\kappa \in L^{\infty}_+(D)$,
- in any dimension $n \ge 2$,
- for partial boundary data on open subset $\Gamma \subseteq \partial \Omega$.

H./Ullrich, SIAM J. Math. Anal. 2013:

$$B \subseteq D \iff \Lambda(1 + \chi_B) \ge \Lambda(\sigma)$$

$$\iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma)$$

- Yields theoretical uniqueness for inclusion detection
- Rigorously detects unknown shape for exact data
- Fast and simple, no PDE solutions! (Precalculate Λ(1) and Λ'(1))
- Convergence for noisy data $\Lambda_{\text{meas}}^{\delta} \to \Lambda(\sigma) \Lambda(1)$:

$$R(\Lambda_{\mathsf{meas}}^{\delta}, \delta, B) \coloneqq \left\{ egin{array}{ll} 1 & \mathsf{if} \ rac{1}{2} \Lambda'(1) \chi_B \geq \Lambda_{\mathsf{meas}}^{\delta} - \delta I \\ 0 & \mathsf{else}. \end{array}
ight.$$

Then
$$R(\Lambda_{\text{meas}}^{\delta}, \delta, B) \to 1$$
 iff $B \subseteq D$.

Quantitative, pixel-based variant of monotonicity method:

- Pixel partition $\Omega = \bigcup_{k=1}^{m} P_k$
- Quantitative monotonicity tests

$$eta_k \in [0,\infty]$$
 max. values s.t. $eta_k \Lambda'(1) \chi_{P_k} \geq \Lambda(\sigma) - \Lambda(1)$
 $eta_k^{\delta} \in [0,\infty]$ max. values s.t. $eta_k^{\delta} \Lambda'(1) \chi_{P_k} \geq \Lambda_{\mathsf{meas}}^{\delta} - \delta I$

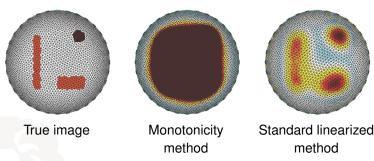
"Raise conductivity in each pixel until monotonicity test fails."

By theory of monotonicity method:

$$eta_k^{\delta} o eta_k$$
 and eta_k fulfills $\left\{ egin{array}{ll} eta_k = 0 & \text{if } P_k \notin D \\ eta_k \geq rac{1}{2} & \text{if } P_k \subseteq D \end{array}
ight.$

Plotting β_{ι}^{δ} shows true inclusions up to pixel partition.

Realistic example (32 electrodes, 1% noise)



- Monotonicity method rigorously converges for $\delta \to 0 \dots$
- ... but the heuristic standard linearized method works much better for realistic scenarios.

Can we improve the monotonicity method without loosing convergence?

Monotonicity-based regularization

GOETHE UNIVERSITÄT

Monotonicity-based regularization

Standard linearized methods for EIT: Minimize

$$\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|^2 + \alpha \|\kappa\|^2 \rightarrow \min!$$

Choice of norms heuristic. No convergence theory!

Monotonicity-based regularization: Minimize

$$\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|_{\mathsf{F}} \to \mathsf{min}!$$

under the constraint $\kappa|_{P_k} = \text{const.}, \ 0 \le \kappa|_{P_k} \le \min\{\frac{1}{2}, \beta_k\}.$

 $(\|\cdot\|_F)$: Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

There exists unique minimizer $\hat{\kappa}$ and

$$P_k \subseteq \operatorname{supp} \hat{\kappa} \iff P_k \subseteq \operatorname{supp}(\sigma - 1).$$

• Minimizer fulfills $\hat{\kappa} = \sum_{k=1}^{m} \min\{1/2, \beta_k\} \chi_{P_k}$

Monotonicity-based regularization

For noisy measurements $\Lambda_{\text{meas}}^{\delta} \approx \Lambda(\sigma) - \Lambda(1)$:

Use regularized monotonicity tests

$$\beta_k^\delta \in \left[0,\infty\right] \text{ max. values s.t. } \beta_k^\delta \Lambda'(1) \chi_{P_k} \geq \Lambda_{\text{meas}}^\delta - \delta I$$
 $(\delta > 0: \text{ noise level in } \mathcal{L}(L_\diamond^2(\partial\Omega))\text{-norm})$

Minimize

$$\|\Lambda'(1)\kappa^{\delta} - \Lambda_{\text{meas}}^{\delta}\|_{\mathsf{F}} \to \mathsf{min}!$$

under the constraint $\kappa^{\delta}|_{P_k} = \text{const.}, \ 0 \le \kappa^{\delta}|_{P_k} \le \min\{\frac{1}{2}, \beta_k^{\delta}\}.$

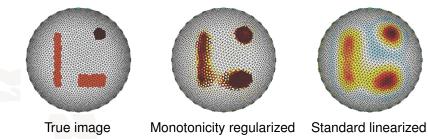
Theorem (H./Mach, Inverse Problems 2016)

► There exist minimizers κ^{δ} and $\kappa^{\delta} \to \hat{\kappa}$ for $\delta \to 0$.

Monotonicity-regularized solutions converge against correct shape.

Realistic example (32 electrodes, 1% noise)

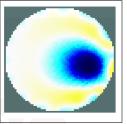
method

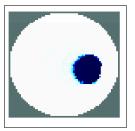


Monotonicity regularized method rigorously converges and is up to par with (outperforms?) heuristic standard linearized method.

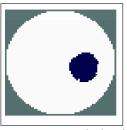
method

Phantom data example





monoton.-regularized (Matlab quadprog)



monoton.-regularized (cvx package)

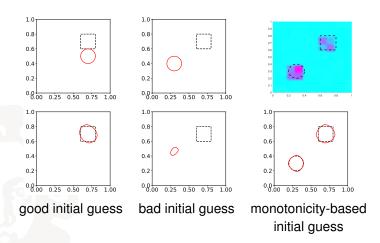
Monotonicity-regularization vs. community standard

(H./Mach, Trends Math. 2018)

- ► EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
- ► EIDORS standard solver: linearized method with Tikhonov regularization
- ▶ Dataset: iirc_data_2006 (Woo et al.): 2cm insulated inclusion in 20cm tank
 - using interpolated data on active electrodes (H., Inverse Problems 2015)

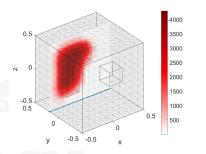
Extensions and related recent results

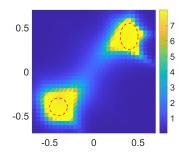
Monotonicity-based globalization of level-set methods



Monotonicity-based initialization yields faster & globally convergent level-set method (H./Meftahi, arXiv:2501.15887)

Elasticity and Helmholtz equation





Recent significant extensions:

- Eberle/H., Comput. Mech. 2022:
 Monotonicity-bas. regularization for elasticity (two Lamé parameters)
- Eberle/H./Wang, 2025: Monotonicity-bas. regularization for Helmholtz (coercive + compact)

Beyond inclusion detection

Lemma.

$$\int_{\partial\Omega} g(\Lambda(\sigma_1) - \Lambda(\sigma_2)) g \, ds \ge \int_{\Omega} (\sigma_2 - \sigma_1) |\nabla u_{\sigma_2}^g|^2 \, dx$$

$$= \int_{\partial\Omega} g \Lambda'(\sigma_2) (\sigma_1 - \sigma_2) g \, ds.$$

for all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega), g \in L^2_{\diamond}(\partial \Omega)$.

$$\rightarrow$$
 For all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega)$: $\Lambda(\sigma_1) - \Lambda(\sigma_2) \geq \Lambda'(\sigma_2)(\sigma_1 - \sigma_2)$.

$$\rightarrow$$
 Convexity: For all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega), t \in [0,1]$

$$\Lambda((1-t)\sigma_1+t\sigma_2) \leq (1-t)\Lambda(\sigma_1)+t\Lambda(\sigma_2).$$

The "monotonicity lemma" also implies convexity.

→ Convex reformulation of Calderón problem (H., SIAM J. Math. Anal. 2023)

Conclusions

Inverse coeff. problems such as EIT are highly ill-posed & non-linear.

- Global convergence of generic solvers seems out-of-reach.
- Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield

- theoretical uniqueness results,
- globally convergent inclusion detection methods,
- rigorous regularizers for noise-stable data fitting methods.

Monotonicity-based approaches

- work for partial boundary data, independently of dimension,
- extended to many other inverse elliptic PDE problems,
- can globalize iterative methods,
- connect inverse coeff. problems to convex optimization (SDP).