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EIT and the Calderdn problem
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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulpq) : usolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Application: Electrical impedance tomography (EIT) UNIVERSITAT

> Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Generic approaches UNIVERSITAT

Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) ~ L3(9Q), g+~ ulaq,

where u solves (1) with cdyuyq = g

» Linearize and regularize:

Ameas ¥ A(0) ~ A(0p) +A/(G())(G -0p).
(op: Initial guess or reference state e.g. exhaled state)

~ Regularize linearized problem (& repeat for Newton-type algorithm.)

» Regularize and linearize:
Consider non-linear Tikhonov functional, e.g.,

HAmeas_A(G)||2+0‘ ”0_00”2 — min!

and minimize by linearization (e.g., gradient-based or Newton-type methods)
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Generic approaches

Advantages of generic optimization-based solvers:
> Very flexible, additional data/unknowns easily incorporated

> Problem-specific regularization can be applied
(e.g., total variation penalization, stochastic priors, learning-based techniques, . ..)

Problems with generic optimization-based solvers
» High computational cost (real-time imaging?)
> Evaluations of A(-) and A’(+) require PDE solutions.
> lterative approaches typically require many evaluations

» Global convergence? Resolution?

> Newton-type approaches highly depend on initial guess
> Convergence of nonlinear Tikhonov requires global minimization
> Resolution estimates & stability for realistic noise?

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



GOETHE
UNIVERSITAT

FRANKFURT AM MAIN

Problem of non-linearity / local convergence
Error of standard solver (Matlab’s 1 sgnonlin) w.r.t. initial value:

(for simple 2D Calderén problem with 2 unknowns and 3 measurements)
log, H’T(N) — || >0
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o
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Can we develop fast and globally convergent algorithms?

This talk: Fast and globally convergent method for inclusion detection
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Monotonicity-based methods
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Monotonicity w.r.t. Loewner order UNIVERSITAT

For two conductivities 6y, 01 € L*(Q):

ocp<or = A(op)=A(oy)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)
[ (or-alvuol> [ g(a(on)-Ao))g> [ 2 (01-00) 7ol
Q oQ Q 0]

where ug € H! (Q) solves
V-(00Vup) =0, 00dvug|yq =g

Converse monotonicity relations can be shown by controlling |V uo|*
(Localized Potentials: H., Inverse Probl. Imaging 2008)
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Theoretical consequences FRANKY D2 M M ATy

Monotonicity & localized potentials yield uniqueness results:

» Non-linear Calderdn problem: (Kohn/Vogelius 1985, H./Seo 2010)
If o1 € L°(Q) fulfills (UCP) and o, — 0 is pcw. analytic then

A(oy) =A(0y) implies o) =03.

» Linearized Calderén problem: (H./Seo 2010)
If o1 € L (Q) fulfills (UCP) and k € L*°(Q) is pcw. analytic then

A'(o1)k=0 implies k=0.

» Calderdn problem with finitely many measurements:
(Linearized: Lechleiter/Rieder 2008, Non-linear: H. 2019)
Using sulfficiently many electrodes (CEM) uniquely determines
conductivity up to desired finite resolution (and Lipschitz stability holds).
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Monotonicity method for inclusion detection

Simple inclusion detection problem (for ease of presentation)
> op=1
»or=1+xp
» Dopen, DcQ, QD connected

All of the following also holds for
> 0y pcw. analytic and known,
» 01 = 0p+Kxp with k€ L° (D),
> in any dimension n > 2,
» for partial boundary data on open subset I" ¢ dQ.
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Monotonicity method for inclusion detection UNIVERSITAT

H./Ullrich, SIAM J. Math. Anal. 2013:
BcD < A(l+yxp)=A(0)

— A(1)+%A'(1)x3 - A(G)

v

Yields theoretical uniqueness for inclusion detection
Rigorously detects unknown shape for exact data

Fast and simple, no PDE solutions! (Precalculate A(1) and A’(1))
» Convergence for noisy data A2 .. - A(c) -A(1):

v

v

meas
s 1IN (1) = AS s - 1
R(Armeas, 0,B) ‘_{ 0 else.

Then R(AS.s,8,B) - 1iff BC D.

meas’
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Pixel-based implementation
Quantitative, pixel-based variant of monotonicity method:
> Pixel partition Q = UL, Pk
» Quantitative monotonicity tests
Bi € [0,00] max. values s.t. BA'(1)xp, = A(0) - A(1)
B € [0,00] max. values s.t. BEA' (1) xp, = Ad s — 81
“Raise conductivity in each pixel until monotonicity test fails.”
> By theory of monotonicity method:

[ . Bk =0 ifP ¢_D
Bk d Bk and Bk fulflllS { Bk > % if Pk cD

Plotting B,f shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise) PRRAIAT
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» Monotonicity method rigorously converges for 6 — 0 . ..

» ...but the heuristic standard linearized method works much
better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization
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Monotonicity-based regularization
» Standard linearized methods for EIT: Minimize
|A' (1)x = (A(e) =A(1)) | +a x| * — min!
Choice of norms heuristic. No convergence theory!
> Monotonicity-based regularization: Minimize
[ (1) %~ (A(6) = A(1))] £ ~ min!

under the constraint k|p, = const., 0 < k|p <min{1, B¢ }.

(|| || 7 Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)
» There exists unique minimizer k and

P.csuppk <= P, Csupp(c-1).

> Minimizer fulfills & = Y7°, min{1/2, B } xp,
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Monotonicity-based regularization

For noisy measurements A2 ~ A(c) - A(1):

» Use regularized monotonicity tests

B € [0,00] max. values s.t. BEA' (1) xp, = Ad s — 81
(8 > 0: noise level in £L(L2(9Q))-norm)
> Minimize
||A/(1)K6 _Ar‘ieas” F — min!

under the constraint k°|p, = const., 0 < k°[p <min{},B2}.

Theorem (H./Mach, Inverse Problems 2016)

» There exist minimizers k° and k% — & for § — 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)
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» Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example ONIERSITAT

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)
Monotonicity-regularization vs. community standard
(H./Mach, Trends Math. 2018)

> EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
> EIDORS standard solver: linearized method with Tikhonov regularization

> Dataset: iirc.data-2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

> using interpolated data on active electrodes (H., Inverse Problems 2015)
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Extensions and related recent results
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Monotonicity-based globalization of level-set methods ONIERSITAT
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good initial guess bad initial guess monotonicity-based
initial guess

> Monotonicity-based initialization yields faster & globally
convergent level-set method (H./Meftahi, arXiv:2501.15887)
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Elasticity and Helmholtz equation ONIERSITAT
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Recent significant extensions:
> Eberle/H., Comput. Mech. 2022:
Monotonicity-bas. regularization for elasticity (two Lamé parameters)
> Eberle/H./Wang, 2025:
Monotonicity-bas. regularization for Helmholtz (coercive + compact)
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Beyond inclusion detection UNIVERSITAT

Lemma.
| ga(o)-Ae))g ds> [ (0= 01wt

:fmg/\'(@)(ol-@)g ds.

for all 61,07 € L° (), g€ L2 (9Q).

~ Forall 1,0, € L7 (Q): A(01)-A(02) = A (0,) (01— 0)).
~ Convexity: For all 01,0, € L (Q), 1 €[0,1]

A((1-t)o1+102) < (1-t)A(01) +1A(02).

The "monotonicity lemma” also implies convexity.

~ Convex reformulation of Calderén problem (H., SIAM J. Math. Anal. 2023)
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Inverse coeff. problems such as EIT are highly ill-posed & non-linear.
> Global convergence of generic solvers seems out-of-reach.
» Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield
> theoretical uniqueness results,
> globally convergent inclusion detection methods,
> rigorous regularizers for noise-stable data fitting methods.

Monotonicity-based approaches
» work for partial boundary data, independently of dimension,
> extended to many other inverse elliptic PDE problems,
> can globalize iterative methods,
> connect inverse coeff. problems to convex optimization (SDP).
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