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EIT and the Calderón problem
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω) → L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Application: Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Generic approaches

Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω) → L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.

▸ Linearize and regularize:

Λmeas ≈Λ(σ) ≈Λ(σ0)+Λ
′(σ0)(σ −σ0).

(σ0: Initial guess or reference state e.g. exhaled state)

↝ Regularize linearized problem (& repeat for Newton-type algorithm.)

▸ Regularize and linearize:
Consider non-linear Tikhonov functional, e.g.,

∥Λmeas−Λ(σ)∥2+α ∥σ −σ0∥2→min!

and minimize by linearization (e.g., gradient-based or Newton-type methods)
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Generic approaches

Advantages of generic optimization-based solvers:
▸ Very flexible, additional data/unknowns easily incorporated
▸ Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, learning-based techniques, . . . )

Problems with generic optimization-based solvers
▸ High computational cost (real-time imaging?)

▸ Evaluations of Λ(⋅) and Λ
′(⋅) require PDE solutions.

▸ Iterative approaches typically require many evaluations

▸ Global convergence? Resolution?
▸ Newton-type approaches highly depend on initial guess
▸ Convergence of nonlinear Tikhonov requires global minimization
▸ Resolution estimates & stability for realistic noise?
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Problem of non-linearity / local convergence

Error of standard solver (Matlab’s lsqnonlin) w.r.t. initial value:
(for simple 2D Calderón problem with 2 unknowns and 3 measurements)

Can we develop fast and globally convergent algorithms?

This talk: Fast and globally convergent method for inclusion detection
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Monotonicity-based methods
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Monotonicity w.r.t. Loewner order

For two conductivities σ0,σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ⪰Λ(σ1)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

∫
Ω

(σ1−σ0)∣∇u0∣2 ≥ ∫
∂Ω

g(Λ(σ0)−Λ(σ1))g ≥ ∫
Ω

σ0

σ1
(σ1−σ0)∣∇u0∣2

where u0 ∈H1
◇(Ω) solves

∇⋅(σ0∇u0) = 0, σ0∂νu0∣∂Ω = g.

Converse monotonicity relations can be shown by controlling ∣∇u0∣2
(Localized Potentials: H., Inverse Probl. Imaging 2008)
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Theoretical consequences

Monotonicity & localized potentials yield uniqueness results:
▸ Non-linear Calderón problem: (Kohn/Vogelius 1985, H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and σ2−σ1 is pcw. analytic then

Λ(σ1) =Λ(σ2) implies σ1 = σ2.

▸ Linearized Calderón problem: (H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and κ ∈ L∞(Ω) is pcw. analytic then

Λ
′(σ1)κ = 0 implies κ = 0.

▸ Calderón problem with finitely many measurements:
(Linearized: Lechleiter/Rieder 2008, Non-linear: H. 2019)

Using sufficiently many electrodes (CEM) uniquely determines
conductivity up to desired finite resolution (and Lipschitz stability holds).
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Monotonicity method for inclusion detection

Simple inclusion detection problem (for ease of presentation)

▸ σ0 = 1
▸ σ1 = 1+χD

▸ D open, D ⊆Ω, Ω∖D connected

All of the following also holds for
▸ σ0 pcw. analytic and known,
▸ σ1 = σ0+κχD with κ ∈ L∞+ (D),
▸ in any dimension n ≥ 2,
▸ for partial boundary data on open subset Γ ⊆ ∂Ω.
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Monotonicity method for inclusion detection

H./Ullrich, SIAM J. Math. Anal. 2013:

B ⊆D ⇐⇒ Λ(1+χB) ⪰Λ(σ)

⇐⇒ Λ(1)+ 1
2

Λ
′(1)χB ⪰Λ(σ)

▸ Yields theoretical uniqueness for inclusion detection
▸ Rigorously detects unknown shape for exact data
▸ Fast and simple, no PDE solutions! (Precalculate Λ(1) and Λ

′(1))

▸ Convergence for noisy data Λ
δ
meas→Λ(σ)−Λ(1):

R(Λδ

meas,δ ,B) ∶= {
1 if 1

2 Λ
′(1)χB ⪰Λ

δ
meas−δ I

0 else.

Then R(Λδ
meas,δ ,B) → 1 iff B ⊆D.
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Pixel-based implementation

Quantitative, pixel-based variant of monotonicity method:
▸ Pixel partition Ω = ⋃m

k=1 Pk

▸ Quantitative monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ
′(1)χPk ⪰Λ(σ)−Λ(1)

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ⪰Λ

δ

meas−δ I

“Raise conductivity in each pixel until monotonicity test fails.”

▸ By theory of monotonicity method:

β
δ

k → βk and βk fulfills { βk = 0 if Pk /⊆D
βk ≥ 1

2 if Pk ⊆D

Plotting β
δ

k shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

▸ Monotonicity method rigorously converges for δ → 0 . . .
▸ . . . but the heuristic standard linearized method works much

better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization
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Monotonicity-based regularization

▸ Standard linearized methods for EIT: Minimize

∥Λ′(1)κ −(Λ(σ)−Λ(1))∥2+α ∥κ∥2→min!

Choice of norms heuristic. No convergence theory!

▸ Monotonicity-based regularization: Minimize

∥Λ′(1)κ −(Λ(σ)−Λ(1))∥F→min!

under the constraint κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{1
2 ,βk}.

(∥ ⋅ ∥F : Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

▸ There exists unique minimizer κ̂ and

Pk ⊆ supp κ̂ ⇐⇒ Pk ⊆ supp(σ −1).
▸ Minimizer fulfills κ̂ =∑m

k=1 min{1/2,βk}χPk
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Monotonicity-based regularization

For noisy measurements Λ
δ
meas ≈Λ(σ)−Λ(1):

▸ Use regularized monotonicity tests

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ⪰Λ

δ

meas−δ I

(δ > 0: noise level in L(L2
◇
(∂Ω))-norm)

▸ Minimize
∥Λ′(1)κδ −Λ

δ

meas∥F→min!

under the constraint κ
δ ∣Pk = const., 0 ≤ κ

δ ∣Pk ≤min{1
2 ,β

δ

k }.

Theorem (H./Mach, Inverse Problems 2016)

▸ There exist minimizers κ
δ and κ

δ → κ̂ for δ → 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

▸ Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)

Monotonicity-regularization vs. community standard
(H./Mach, Trends Math. 2018)

▸ EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
▸ EIDORS standard solver: linearized method with Tikhonov regularization

▸ Dataset: iirc data 2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

▸ using interpolated data on active electrodes (H., Inverse Problems 2015)
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Extensions and related recent results
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Monotonicity-based globalization of level-set methods
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initial guess

▸ Monotonicity-based initialization yields faster & globally
convergent level-set method (H./Meftahi, arXiv:2501.15887)
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Elasticity and Helmholtz equation

Recent significant extensions:
▸ Eberle/H., Comput. Mech. 2022:

Monotonicity-bas. regularization for elasticity (two Lamé parameters)

▸ Eberle/H./Wang, 2025:
Monotonicity-bas. regularization for Helmholtz (coercive + compact)

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



Beyond inclusion detection

Lemma.

∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds ≥ ∫
Ω

(σ2−σ1)∣∇ug
σ2 ∣

2 dx

= ∫
∂Ω

gΛ
′(σ2)(σ1−σ2)g ds.

for all σ1,σ2 ∈ L∞
+
(Ω), g ∈ L2

◇
(∂Ω).

↝ For all σ1,σ2 ∈ L∞+ (Ω): Λ(σ1)−Λ(σ2) ⪰Λ
′(σ2)(σ1−σ2).

↝ Convexity: For all σ1,σ2 ∈ L∞+ (Ω), t ∈ [0,1]

Λ((1− t)σ1+ tσ2) ⪯ (1− t)Λ(σ1)+ tΛ(σ2).

The ”monotonicity lemma” also implies convexity.

↝ Convex reformulation of Calderón problem (H., SIAM J. Math. Anal. 2023)
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Conclusions

Inverse coeff. problems such as EIT are highly ill-posed & non-linear.
▸ Global convergence of generic solvers seems out-of-reach.
▸ Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield
▸ theoretical uniqueness results,
▸ globally convergent inclusion detection methods,
▸ rigorous regularizers for noise-stable data fitting methods.

Monotonicity-based approaches
▸ work for partial boundary data, independently of dimension,
▸ extended to many other inverse elliptic PDE problems,
▸ can globalize iterative methods,
▸ connect inverse coeff. problems to convex optimization (SDP).
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