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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulpq) : usolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Application: Electrical impedance tomography ONIERSITAT

> Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Inversion of ¢ — A(0)? ENERSITAT

Generic solvers for non-linear inverse problems:
» Linearize and regularize:

Ameas ¥ A(0) ~ A(0p) +A'(00) (0 - 0)).

op: Initial guess or reference state (e.g. exhaled state)

~ Linear inverse problem for o
(Solve using linear regularization method, repeat for Newton-type algorithm.)

» Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

HAmeas_A(G)HZ"'a HG—00||2 — min!

Advantages of generic optimization-based solvers:
> Very flexible, additional data/unknowns easily incorporated

> Problem-specific regularization can be applied
(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of ¢ — A(0)?

Problems with generic optimization-based solvers

» High computational cost
» Evaluations of A(-) and A’(-) require PDE solutions.
> PDE solutions too expensive for real-time imaging

» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)
» Convergence against true solution for exact meas. Ameas?
(in the limit of infinite computation time)
> Convergence against true solution for noisy meas. A2,?
(in the limit of § — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

Is there any specific problem structure that we can use to derive
convergent algorithms?
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Monotonicity UNIVERSITAT

For two conductivities oy, 01 € L (Q):

ocp<op =— A(op)>A(oy)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)
[ @=an)ivul> [ g(a(or)-Ae))e> [ Z(o1-00)vuof
Q aQ Q 01

for all solutions u of
V- (G()Vu()) = 0, G()avu()bg =g.

Converse monotonicity relation can be shown by controlling |Vuo|*.
(Localized Potentials: H., Inverse Probl. Imaging 2008)

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



UNIVERSITAT

Theoretical consequences

Monotonicity & localized potentials yield uniqueness results:

» Non-linear Calderdn problem: (Kohn/Vogelius 1985, H./Seo 2010)
If o1 € L°(Q) fulfills (UCP) and o, — o is pcw. analytic then

A(o1)-A(oy) implies o) =0>.

> Linearized Calderdn problem: (H./Seo 2010)
If o1 € L°(Q) fulfills (UCP) and k € L*°(Q) is pcw. analytic then

A'(o1)k=0 implies Kk=0.

» Discretized Calderon problem:
(Linearized: Lechleiter/Rieder 2008, Non-linear: H. 2019)
With enough electrodes, the Calderdn problem with complete
electrode model is uniquely solvable in finite dimensional
subspaces of pcw. analytic functions (e.g., pcw. constant).

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



UNIVERSITAT

Monotonicity method

Sample inclusion detection problem (for ease of presentation)
> op=1
»or=1+xp
» Dopen, DcQ, QD connected

All of the following also holds for
> 0y pcw. analytic and known,
» 01 = 0p+Kxp with k€ L° (D),
> in any dimension n > 2,
» for partial boundary data on open subset I" ¢ dQ.
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Monotonicity method UNIVERSITAT

H./Ullrich, SIAM J. Math. Anal. 2013:

BeD <« A(1)+%A’(1)x3 > A(0)

v

Yields theoretical uniqueness result

Simple to implement, no PDE solutions

» Similar comput. cost as single Newton (linearization) step
Rigorously detects unknown shape for exact data

» Convergence for noisy data A2, - A(c) - A(1):

v

v

5 1 AN (D) > Adeas — 81
R(Ameas: 9,B) '_{ 0 else.

Then R(AS ., 8,B) - 1iff BC D.

meas>
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Monotonicity method

Quantitative, pixel-based variant of monotonicity method:
> Pixel partition Q = UL, Pk
» Quantitative monotonicity tests
Bi € [0,00] max. values s.t. BA'(1)xp, > A(0) - A(1)
B € [0,00] max. values s.t. BEA' (1) xp, > AS s — 81

“Raise conductivity in each pixel until monotonicity test fails.”

> By theory of monotonicity method:

=0 ifP¢D
if B,cD

v
=

Be - B and mmwm{%

Plotting B,f shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

» Monotonicity method rigorously converges for 6 -0 ...

» . .but the heuristic standard linearized method works much
better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization
» Standard linearized methods for EIT: Minimize
|A' (1)x = (A(e) =A(1)) | +a x| * — min!
Choice of norms heuristic. No convergence theory!
> Monotonicity-based regularization: Minimize
[ (1) %~ (A(6) = A(1))] £ ~ min!

under the constraint k|p, = const., 0 < k|p <min{1, B¢ }.

(|| || 7 Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)
» There exists unique minimizer k and

P.csuppk <= P, Csupp(c-1).

> Minimizer fulfills & = Y7°, min{1/2, B } xp,
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Monotonicity-based regularization

For noisy measurements A2 ~ A(c) - A(1):

» Use regularized monotonicity tests

B € [0,00] max. values s.t. BEA' (1) xp, 2 AS s — 81
(8 > 0: noise level in £L(L2(9Q))-norm)
> Minimize
||A/(1)K6 _Ar‘ieas” F — min!

under the constraint k°|p, = const., 0 < k°[p <min{},B2}.

Theorem (H./Mach, Inverse Problems 2016)

» There exist minimizers k° and k% — & for § — 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

» Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example ONIERSITAT

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)
Monotonicity-regularization vs. community standard
(H./Mach, Trends Math. 2018)

> EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
> EIDORS standard solver: linearized method with Tikhonov regularization

> Dataset: iirc.data-2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

> using interpolated data on active electrodes (H., Inverse Problems 2015)
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i UNIVERSITAT
Conclusions NLVERSITAT

Inverse coeff. problems such as EIT are highly ill-posed & non-linear.
» Convergence of generic solvers unclear.
» Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield
> theoretical uniqueness results,
» convergent inclusion detection methods,

> rigorous regularizers for residuum-based methods.

Monotonicity-based regularization can be extended
> to partial boundary data, independently of dimension n > 2,
» to linear elasticity problems (Eberle/H. 2022)
> to inverse scattering (Everle/H./Wang: work in progress)
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