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1. Introduction to inverse problems for elliptic PDEs. We will introduce
the inverse problem of Electrical Impedance Tomography (aka the famous Calderón
problem). This problem has received a very high amount of attention as it has im-
portant applications in medical imaging and non-destructive testing. It also serves as
an example problem since solution methods for EIT can often be extended to other
elliptic coefficient problems (e.g. in elasticity, electromagnetics or acoustic scattering).

1.1. Electrical Impedance Tomography (EIT). Let Ω ⊂ Rd, d ≥ 2 be a
Lipschitz bounded domain that is subject to stationary (or low-frequency) electrical
voltage and current measurements. Let

u : Ω → R,

denote the electrical potential function, i.e., u(x) is the voltage in the point x ∈ Ω
with respect to ground level.

The continuous version ofOhm’s law states that the current flux resulting from voltage
differences is σ(x)∇u(x), where

σ : Ω → R

is the material-dependent conductivity. We assume that the electrical currents can
only enter or exit the domain Ω on its boundary, so that

∇ · (σ(x)∇u(x)) = 0 for all x ∈ Ω.

Non-invasive electrical measurements can only be performed on the boundary ∂Ω.
Let ν(x) denote the outer normal in a boundary point x ∈ ∂Ω. Then, u(x) is the
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voltage in the boundary point, and ν(x) · σ(x)∇u(x) = ∂ν(x)σ(x)u(x) is the electrical
current flux that enters or exits the domain at this boundary point.

For the sake of brevity, we usually omit the argument x. We conclude that the inverse
problem of EIT is to reconstruct the conductivity coefficient σ in the elliptic PDE

∇ · (σ∇u) = 0 in Ω (1.1)

from measurements of its Dirichlet boundary values u|∂Ω (boundary voltages) and its
Neumann boundary values σ∂νu|∂Ω (boundary currents).

In the following, we will assume that we drive a certain amount of currents through the
imaging domain and measure the required voltages. This means that we prescribe
an electrical current flux pattern g : ∂Ω → R, and measure the required voltages
u|∂Ω, where u solves (1.1) with σ∂νu|∂Ω = g. We often denote this solution by ug

σ to
highlight its dependance on σ and g.

Note that all results in this lecture series easily carry over to the case of partial
boundary measurements, where measurements are only done on an (arbitrarily small)
open part Σ ⊆ ∂Ω.

1.2. Variational formulation. We assume the reader to be familiar with the
concepts of Sobolev spaces, weak derivatives, and the variational formulation of
PDEs. Given a conductivity coefficient σ ∈ L∞(Ω), and Neumann boundary data
g ∈ L2(∂Ω), we have that u ∈ H1(Ω) solves

∇ · (σ∇u) = 0 in Ω, and σ∂νu|∂Ω = g on ∂Ω (1.2)

in the variational sense, if and only if, u ∈ H1(Ω) solves
ˆ
Ω

σ∇u · ∇v dx =

ˆ
∂Ω

gv ds for all v ∈ H1(Ω).

To comply with the conservation of charge, the amount of currents entering and exiting
the domain must sum up to zero. Moreover, the conductivity should be positive, and
the solution can only be unique up to a constant function (which corresponds to fixing
the ground level of zero voltage). We therefore introduce the spaces

L2
⋄(∂Ω) := {g ∈ L2(∂Ω) :

ˆ
∂Ω

g ds = 0},

H1
⋄ (Ω) := {u ∈ H1(Ω) :

ˆ
∂Ω

uds = 0},

L∞
+ (Ω) := {σ ∈ L∞(Ω) : ess inf

x∈Ω
σ(x) > 0}.

Note that the ground level fixing in H1
⋄ (Ω) is chosen in such a way that the traces of

H1
⋄ (Ω)-functions lie in L2

⋄(∂Ω).

Theorem 1.1. Let σ ∈ L∞
+ (Ω), and g ∈ L2

⋄(∂Ω). Then u ∈ H1
⋄ (Ω) solves the EIT

equation (1.2) (in the variational sense), if and only if
ˆ
Ω

σ∇u · ∇v dx =

ˆ
∂Ω

gv ds for all v ∈ H1
⋄ (Ω).

There exists a unique solution ug
σ ∈ H1

⋄ (Ω), and this solution depends linearly and
continuously on g.
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Proof. One can show that the H1-seminorm u 7→
(´

Ω
|∇u|2 dx

)1/2
is equivalent to the

H1-norm on the subspace H1
⋄ (Ω). This yields that

bσ : H1
⋄ (Ω)×H1

⋄ (Ω) → R, (u, v) 7→
ˆ
Ω

σ∇u · ∇v dx

is a coercive, continous, and symmetric bilinear form, and

l : H1
⋄ (Ω) → R, v 7→

ˆ
∂Ω

gv ds

is a continuous linear form that depends continuously and linearly on g ∈ L2
⋄(∂Ω).

Then, the assertion follows from the Lax-Milgram theorem.

1.3. The Neumann-to-Dirichlet operator (NtD). Theorem 1.1 shows that
each prescribed electrical current flux pattern g on ∂Ω uniquely determines the voltage
potential u in Ω, which we can then measure on the boundary ∂Ω. Hence, in the
idealized setting of the so-called continuum model with infinitely many, infinitely small
electrodes, measuring all possible current/voltage-combinations can be modelled by
the Neumann-to-Dirichlet-Operator (NtD)

Λ(σ) : L2
⋄(∂Ω) → L2

⋄(∂Ω), g 7→ u|∂Ω,

where u ∈ H1
⋄ (Ω) solves the EIT equation (1.2). By Theorem 1.1, Λ(σ) is a linear

and continuous operator, i.e., Λ(σ) ∈ L(L2
⋄(∂Ω)).

Lemma 1.2. For each σ ∈ L∞
+ (Ω), the NtD Λ(σ) ∈ L(L2

⋄(∂Ω)) is symmetric, positive
definite and compact.

Proof. Theorem 1.1 yields that
ˆ
∂Ω

gΛ(σ)hds =

ˆ
∂Ω

guh
σ ds =

ˆ
Ω

σ∇ug
σ · ∇uh

σ dx,

which shows that Λ(σ) is symmetric and positive definite. The compactness follows
from the fact that the trace mapping

u 7→ u|∂Ω

is a compact linear mapping from H1(Ω) to L2(∂Ω).

1.4. Finitely many measurements. In the continuum model with finitely
many measurements, we assume that we can only drive finitely many currents

{f1, . . . , fm} ∈ L2
⋄(∂Ω)

and that we can only measure the resulting voltage projected to the linear span of
these currents. Hence, for σ ∈ L∞

+ (Ω), we assume that we can measure the finite-
dimensional matrix

Fm(σ) :=

(ˆ
∂Ω

fjΛ(σ)fk ds

)
j,k=1,...,m

∈ Rm×m.

In other words, we assume that the we cannot measure the whole infinite-dimensional
NtD, but only its orthogonal (Galerkin) projection to the finite dimensional space
span{g1, . . . , gm}.
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We furthermore make the assumption that that f1, . . . , fm are taken from an infi-
nite series (fk)k∈N, which has dense span in L2

⋄(∂Ω). This will ensure that Fm(σ)
approximates the NtD Λ(σ) when more and more measurements are being used.

In practical applications, one has to model the current flux and voltage measurements
on electrodes attached to the imaging object’s boundary ∂Ω. The gap model assumes
that the current flux is constant along each electrode and that one can measure the
integral over the voltage over each electrode. This corresponds to the above Galerkin
projection with fj being build up from indicator functions of the electrodes. More
realistic electrode model such as the shunt electrode model, and the complete electrode
model, do not simply yield a Galerkin projection of the NtD, but they allow similar
variational formulations and can be treated widely analogously.

1.5. Differentiability results. For a fixed conductivity σ, the NtD Λ(σ), and
its finitely-many-measurements version Fm(σ), are linear operators mapping the ap-
plied currents to the measured voltages. But these linear operator depend non-linearly
on changes of the conductivity function. The following theorem summarizes the dif-
ferentiability properties of this non-linear dependence.

Theorem 1.3. The mappings

Λ : L∞
+ (Ω) → L(L2

⋄(∂Ω)), σ 7→ Λ(σ),

Fm : L∞
+ (Ω) → Rm×m, σ 7→ Fm(σ),

are infinitely often Fréchet differentiable. Their first derivatives

Λ′(σ) ∈ L(L∞(Ω),L(L2
⋄(∂Ω))), and F ′

m(σ) ∈ L(L∞(Ω),Rm×m),

are given by
ˆ
∂Ω

g (Λ′(σ)d)hds = −
ˆ
Ω

d∇ug
σ · ∇uh

σ dx,

eTj (F ′
m(σ)d) ek = −

ˆ
Ω

d∇ugj
σ · ∇ugk

σ dx

for all d ∈ L∞(Ω). Here, and in the following, ej denotes the j-th unit vector in Rm.

Proof. Let

⟨u, v⟩Ω :=

ˆ
Ω

∇u · ∇v dx+

ˆ
Ω

uv dx ∀u, v ∈ H1
⋄ (Ω),

⟨g, h⟩∂Ω :=

ˆ
∂Ω

uv ds ∀g, h ∈ L2
⋄(Ω)

denote the scalar products on H1
⋄ (Ω), and L2

⋄(∂Ω).

For all σ ∈ L∞
+ (Ω), by the Riesz theorem, there exists a unique operator

B(σ) ∈ L(H1
⋄ (Ω), H

1
⋄ (Ω)) with ⟨B(σ)u, v⟩Ω =

ˆ
Ω

σ∇u · ∇v dx ∀u, v ∈ H1
⋄ (Ω),

B(σ) is symmetric and coercive, cf. the proof of Theorem 1.1. Hence, by the Lax-
Milgram theorem, B(σ) is invertible with symmetric inverse

B(σ)−1 ∈ L(H1
⋄ (Ω), H

1
⋄ (Ω)).
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Let γ : H1
⋄ (Ω) → L2

⋄(∂Ω), u 7→ u|∂Ω denote the trace operator. Then, with these
notations, we have that, for all g ∈ L2

⋄(∂Ω),

⟨B(σ)ug
σ, v⟩ =

ˆ
Ω

σ∇ug
σ · ∇v dx =

ˆ
∂Ω

g(γv) ds = ⟨g, γv⟩∂Ω = ⟨γ∗g, v⟩Ω,

where γ∗ : L2
⋄(∂Ω) → H1

⋄ (Ω) denotes the adjoint operator of γ.

This shows that ug
σ = B(σ)−1γ∗g, and thus

Λ(σ) = γB(σ)−1γ∗.

We therefore now study the differentiabily properties of B(σ)−1. Clearly, B(σ) de-
pends linearly and continuously on σ, so that B(σ) is infinitely often Fréchet differ-
entiable, and

⟨(B′(σ)d)u, v⟩ =
ˆ
Ω

d∇u · ∇v dx for all d ∈ L∞(Ω), u, v ∈ H1
⋄ (Ω).

By the differentiability of operator inversion, we can conclude that σ 7→ B(σ)−1 is
also infinitely often Fréchet differentiable, and that(

B(σ)−1
)′
d = −B(σ)−1 (B′(σ)d)B(σ)−1 for all d ∈ L∞(Ω).

It thus follows that σ 7→ Λ(σ) is infinitely often Fréchet differentiable, and

⟨g, (Λ′(σ)d)h⟩∂Ω =
〈
g, γ

((
B(σ)−1

)′
d
)
γ∗h

〉
∂Ω

= −
〈
g, γB(σ)−1 (B′(σ)d)B(σ)−1γ∗h

〉
∂Ω

= −
〈
γ∗g,B(σ)−1 (B′(σ)d)B(σ)−1γ∗h

〉
Ω

= −
〈
(B′(σ)d)B(σ)−1γ∗h,B(σ)−1γ∗g

〉
Ω

= −
〈
(B′(σ)d)uh

σ, u
g
σ

〉
Ω
= −
ˆ
Ω

d∇ug
σ · ∇uh

σ,

for all g, h ∈ L2
⋄(∂Ω), d ∈ L∞(Ω).

The results are easily carried over to σ 7→ Fm(σ) since this is the orthogonal Galerkin
projection of Λ(σ).

1.6. Some literature and further reading. The term Calderón problem goes
back to the famous paper of Calderón [2] (reprinted as [3]). Our differentiability proof
follows [7] which also shows how to efficiently implement the matrix-valued measure-
ments Fm(σ) in a FEM-setting. For more realistic (extended) electrode models we
refer to [14], and for point electrode models see [5].
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2. Monotonicity and localized potentials. In this lecture, we introduce two
important tools for our further study: the monotonicity and convexity inequality, and
the concept of localized potentials.

2.1. The monotonicity and convexity inequality. The following inequality
shows that a larger conductivity σ leads to a smaller quadratic form for the NtD Λ(σ).
It also implies convexity of Λ in the so-called Loewner order, we will formulate this
in the third lecture.

Lemma 2.1 (Monotonicity and convexity inequality). Let σ1, σ2 ∈ L∞
+ (Ω), g ∈

L2
⋄(∂Ω), and denote u1 := ug

σ1
, and u2 := ug

σ2
. Then

ˆ
Ω

(σ1 − σ2)|∇u2|2 dx ≥ ⟨g, (Λ(σ2)− Λ(σ1)) g⟩∂Ω ≥
ˆ
Ω

σ2

σ1
(σ1 − σ2)|∇u2|2 dx. (2.1)

Proof. Noting that both, u1 and u2 solve the EIT equation with the same Neumann
data g, we can deduce from Theorem 1.1 that

⟨g,Λ(σ2)g⟩∂Ω =

ˆ
∂Ω

gu2 ds =

ˆ
∂Ω

σ1∂νu1 u2 ds =

ˆ
Ω

σ1∇u1∇u2 dx,

and also that

⟨g,Λ(σ2)g⟩∂Ω =

ˆ
∂Ω

gu2 ds =

ˆ
∂Ω

σ2∂νu2 u2 ds =

ˆ
Ω

σ2∇u2∇u2 dx,

and analogous expressions hold for Λ(σ1). Hence,

ˆ
Ω

σ1|∇(u1 − u2)|2 dx =

ˆ
Ω

σ1|∇u1|2 dx− 2

ˆ
Ω

σ2|∇u2|2 dx+

ˆ
Ω

σ1|∇u2|2 dx

= ⟨g,Λ(σ1)g⟩∂Ω − ⟨g,Λ(σ2)g⟩∂Ω +

ˆ
Ω

(σ1 − σ2)|∇u2|2 dx.

Since the left hand side is non-negative, the first asserted inequality in (2.1) follows.

Interchanging σ1 and σ2 we obtain

⟨g, (Λ(σ2)− Λ(σ1)) g⟩∂Ω =

ˆ
Ω

(σ1 − σ2)|∇u1|2 dx+

ˆ
Ω

σ2|∇(u2 − u1)|2 dx

=

ˆ
Ω

(
σ1|∇u1|2 + σ2|∇u2|2 − 2σ2∇u1 · ∇u2

)
dx

=

ˆ
Ω

σ1

∣∣∣∣∇u1 −
σ2

σ1
∇u2

∣∣∣∣2 dx+

ˆ
Ω

(
σ2 −

σ2
2

σ1

)
|∇u2|2 dx.

Since the first integral on the right hand-side is non-negative, the second asserted
inequality follows.

Corollary 2.2. Interchanging σ1 and σ2 in (2.1) also yields

ˆ
Ω

(σ1 − σ2)|∇u1|2 dx ≤ ⟨g, (Λ(σ2)− Λ(σ1)) g⟩∂Ω ≤
ˆ
Ω

σ1

σ2
(σ1 − σ2)|∇u1|2 dx. (2.2)
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2.2. Localized potentials. We will show that the energy term |∇u|2 in the
monotonicity inequality can be made arbitrarily large in some subsection and arbi-
trarily small in another subsection of Ω provided that the high energy part can be
connected to the boundary without crossing the low energy part.

Theorem 2.3 (Localized potentials). Let B ̸⊆ D, where B,D ⋐ Ω are open and D
has a connected complement. Let σ ∈ L∞

+ (Ω) fulfill a unique continuation property∗.

Then, there exists a sequence (gk)k∈N ⊂ L2
⋄(∂Ω), so that the corresponding solutions

uk := ugk
σ ∈ H1

⋄ (Ω) fulfillˆ
B

|∇uk|2 dx → ∞, and

ˆ
D

|∇uk|2 dx → 0.

The proof of Theorem 2.3 will be given in the next subsection.

Remark 2.4. Note that, for the sake of simplicity, we have only present the localized
potentials result for the case where the high-energy part does not touch the boundary
∂Ω. More general versions also allow for this, and also hold for partial boundary
measurements.

2.3. Proof of Theorem 2.3.

Reformulation as range (non-)inclusions. To prove Theorem 2.3, we will intro-
duce, for open sets B,D ⊆ Ω, the linear continuous operators

LB : L2
⋄(∂Ω) → L2(B)d, g 7→ ∇ug

σ|B ,
LD : L2

⋄(∂Ω) → L2(D)d, g 7→ ∇ug
σ|D.

Then the assertion of Theorem 2.3 is equivalent to showing that there exists (gk)k∈N ⊆
L2
⋄(∂Ω), so that

∥LBgk∥L2(B)d → ∞ and ∥LDgk∥L2(D)d → 0.

The norms of operator evaluations are connected to the ranges of the adjoint operators
by the following result from functional analysis.

Lemma 2.5. Let X, H1, and H2 be real Hilbert spaces. Let

A1 : X → H1, and A2 : X → H2,

be linear bounded operators and denote their adjoint operators with

A∗
1 : H1 → X, and A∗

2 : H2 → X.

Then the following holds:

(a) If there exists C > 0 with ∥A1x∥H1
≤ C ∥A2x∥H2

for all x ∈ X, then

R(A∗
1) ⊆ R(A∗

2).

(b) If R(A∗
1) ̸⊆ R(A∗

2), then there exists a sequence (xk)k∈N with

∥A1xk∥H1
→ ∞, and ∥A2xk∥H2

→ 0.

∗i.e., any solution of the EIT equation which is zero in an open set, or possess zero Dirichlet and
Neumann boundary value, must be zero everywhere in Ω
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Proof. Let A∗
1v1 ∈ R(A∗

1) ⊆ X. Then, for all x ∈ X

⟨A∗
1v1, x⟩X = ⟨v1, A1x⟩H1

≤ ∥v1∥H1
∥A1x∥H1

≤ C ∥v1∥H1
∥A2x∥H2

.

This shows that

l : R(A2) → R, l(A2x) := ⟨A∗
1v1, x⟩X

is a well-defined, linear and continuous mapping. By unique continuation to R(A2),
and by zero extension on the orthogonal complement R(A2)

⊥, we can extend l to a
linear and continuous functional l ∈ L(H2,R).
Then, by the Riesz theorem, there exists a unique v2 ∈ H2 so that

⟨v2, w⟩H2
= l(w) for all w ∈ H2.

Hence, for all x ∈ X it follows that

⟨A∗
2v2, x⟩X = ⟨v2, A2x⟩H2

= l(A2x) = ⟨A∗
1v1, x⟩X ,

which shows that A∗
1v1 = A∗

2v2 ∈ R(A∗
2). This proves (a).

To prove (b), we note that we obtain from (a) with contraposition that

R(A∗
1) ̸⊆ R(A∗

2) =⇒ ̸ ∃C > 0 : ∥A1x∥H1
≤ C ∥A2x∥H2

∀x ∈ X.

Hence, for all k ∈ N, there exists ξk ∈ X with

∥A1ξk∥H1 > k2∥A2ξk∥H2 .

If ∥A2ξk∥H2
> 0 for all k ∈ N, then the sequence xk := ξk

k∥A2ξk∥H2
fulfills

∥A1xk∥H1
> k → ∞, and ∥A2xk∥H2

=
1

k
→ 0.

Otherwise, if ∥A2ξj∥H2
= 0 for some j ∈ N, we use the sequence xk :=

kξj
∥A1ξj∥H1

, and

obtain

∥A1xk∥H1
= k → ∞, and ∥A2xk∥H2

= 0.

In both cases, (b) is proven.

Characterization of the adjoints. Using Lemma 2.5, we can deduce Theorem 2.3
from the range (non-)inclusion

R(L∗
B) ̸⊆ R(L∗

D).

We therefore study the adjoints of LB and LD.

Lemma 2.6. Let B,D ⊆ Ω be open sets. Then, the adjoints of LB, and LD, are given
by

L∗
B : L2(B)d → L2

⋄(∂Ω), F 7→ ∇vF |∂Ω,
L∗
D : L2(D)d → L2

⋄(∂Ω), G 7→ ∇vG|∂Ω.
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where, for F ∈ L2(B)d, and G ∈ L2(D)d, the functions vF , vG ∈ H1
⋄ (Ω) solveˆ

Ω

σ∇vF · ∇w dx =

ˆ
B

F · ∇w dx,

ˆ
Ω

σ∇vG · ∇w dx =

ˆ
D

G · ∇w dx.

Proof. Clearly, LB is a linear continuous operator, and the existence of vF follows
from the Lax-Milgram theorem. For all F ∈ L2(B)d, and h ∈ L2

⋄(∂Ω), we have that

⟨L∗
BF, h⟩∂Ω = ⟨F,LBh⟩B =

ˆ
B

F · ∇uh
σ dx =

ˆ
Ω

σ∇vF · ∇uh
σ dx

=

ˆ
∂Ω

hvF |∂Ω ds = ⟨vF |∂Ω, h⟩,

which shows that L∗
BF = vF |∂Ω. The same arguments hold for LD.

Proof of the range (non-)inclusions. We will now prove the range non-inclusion
R(L∗

B) ̸⊆ R(L∗
D) under a stronger assumption.

Lemma 2.7. Let B,D ⋐ Ω be open, let B ∩D = ∅, and let Ω \ (B ∪D) be connected.
Let σ fulfill a unique continuation property. Then

R(L∗
B) ∩R(L∗

D) = {0}.

Furthermore, if B ̸= ∅, then R(L∗
B) ̸= {0}, and thus

R(L∗
B) ̸⊆ R(L∗

D).

Proof. Assume that there exists F ∈ L2(B)d, and G ∈ L2(D)d, with

L∗
BF = L∗

DG ∈ R(L∗
B) ∩R(L∗

D).

Hence, the corresponding functions vF , vG ∈ H1
⋄ (Ω) from Lemma 2.6 fulfill that

vF |∂Ω = vG|∂Ω.

Moreover, vF fulfills
ˆ
Ω

σ∇vF · ∇w dx = 0

for all w ∈ H1(Ω) with suppw ∩ B = ∅, and an analogous statement holds for vG.
Hence, it follows that vF , vG ∈ H1

⋄ (Ω) solve

∇ · (σ∇vF ) = 0 in Ω \B, and σ∂νvF |∂Ω = 0,

∇ · (σ∇vG) = 0 in Ω \D, and σ∂νvG|∂Ω = 0.

By unique continuation, we obtain that vF = vG on Ω\(B∪D). Hence, we can define

v :=


vF = vG on Ω \ (B ∪D),
vF on Ω \B,
vG on Ω \D,
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to obtain a function v ∈ H1
⋄ (Ω) that solves

∇ · (σ∇v) = 0 in Ω, and σ∂νv|∂Ω = 0.

This yields that v = 0, and thus L∗
BF = vF |∂Ω = v|∂Ω = 0. Hence, we have proven

that

R(L∗
B) ∩R(L∗

D) = {0}.

If B ̸= ∅, then, for all g ∈ L2
⋄(∂Ω), unique continuation also yields that

LBg = ∇ug
σ|B = 0 implies that ug

σ = 0 in Ω.

Hence, LB is injective, so that L∗
B has dense range, and thus, a fortiori, R(L∗

B) ̸= {0}.

Proof of Theorem 2.3. Now we can prove our localized potentials result. Let
B,D ⋐ Ω be open, and let B and D both have connected complement, and let B ̸⊂ D.

Then, we can find a small ball ∅ ̸= B′ ⋐ B \D, and it follows that B
′ ∩D = ∅, and

that Ω \ (B ∪D) is connected.

By Lemma 2.7 it follows that

R(L∗
B′) ̸⊆ R(L∗

D).

By Lemma 2.5(b), and Lemma 2.6, we thus obtain a sequence (gk)k∈N ⊆ L2
⋄(∂Ω), so

that uk := ugk
σ fulfills

ˆ
B′

|∇uk|2 dx = ∥LB′gk∥2
L2(B′)d → ∞, and

ˆ
D

|∇uk|2 dx = ∥LDgk∥L2(D)d → 0.

Of course, this also implies that

ˆ
B

|∇uk|2 dx ≥
ˆ
B′

|∇uk|2 dx → ∞,

so that Theorem 2.3 is proven. □

2.4. Some literature and further reading. The monotonicity inequality goes
back to [13, 12]. A general version of the functional analytic result connecting norms
of operator evaluations to the ranges of the adjoints is listed as the ”14th important
property of Banach space” in Bourbaki[1]. The idea of localized potentials goes back
to [4], our presentation is a simplified variant of [11], where also a more general variant
(that allows the high-energy part to touch the boundary ∂Ω) can be found.
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3. Monotonicity-based shape reconstruction. We now turn to the inverse
problem of reconstructing an unknown conductivity σ ∈ L∞

+ (Ω) from the NtD Λ(σ) ∈
L(L2

⋄(∂Ω)) or its finitely-many-measurements version Fm(σ) ∈ Rm×m.

3.1. Loewner monotonicity and convexity. For symmetric operators A,B ∈
L(L2

⋄(∂Ω)) we introduce the semidefinite ordering (aka Loewner ordering):

A ⪯ B denotes that

ˆ
∂Ω

g(B −A)g ds ≥ 0 for all g ∈ L2
⋄(∂Ω).

Also, for functions σ, τ ∈ L∞(Ω),

σ ≤ τ denotes that τ(x) ≥ σ(x) for all x ∈ Ω (a.e.)

Theorem 3.1. With respect to these (partial) order relations, the function σ 7→ Λ(σ)
is a convex, monotonically decreasing operator. The following holds:

(a) For all σ ∈ L∞
+ (Ω), and d ∈ L∞(Ω)

d ≥ 0 implies Λ′(σ)d ⪯ 0.

For all σ, τ ∈ L∞
+ (Ω),

Λ(τ)− Λ(σ) ⪰ Λ′(σ)(τ − σ).

(b) For all σ, τ ∈ L∞
+ (Ω)

σ ≥ τ implies Λ(σ) ⪯ Λ(τ).

For all σ, τ ∈ L∞
+ (Ω), and t ∈ [0, 1],

Λ(tσ + (1− t)τ) ⪯ tΛ(σ) + (1− t)Λ(τ).

Proof. In Theorem 1.3 we showed that
ˆ
∂Ω

g (Λ′(σ)d)hds = −
ˆ
Ω

d∇ug
σ · ∇uh

σ dx.

Hence, the first assertion in (a) is trivial, and the second assertion in (a) is the first
monotonicity inequality in Lemma 2.1. Also, the first assertion in (b) immediately
follows from the first monotonicity inequality in Lemma 2.1.

It remains to prove the second assertion in (b), which corresponds to Loewner-order
convexity. Note that the second assertion in (a) is analogue to the first derivative-
based characterization of convexity for a scalar function. Thus, it is easily checked,
that the second assertion in (b) follows from the second assertion in (a) exactly as in
the scalar case.

The same statements hold for σ 7→ Fm(σ) in the finitely-many measurement setting.

3.2. Monotonicity method for inclusion detection. In many applications
of EIT, the goal is used to detect regions where the conductivity differs from a know
background (inclusion or anomaly detection). A simple example is that σ = 1 + χD,
where D ⊂ Ω is the unknown inclusion, and we aim to recover D from measurements
Ŷ := Λ(1+χD). We will explain the monotonicity-based shape reconstruction method

11



for such simple examples, the results are easy to generalize to varying, but known,
background conductivities, and to unknown, and varying inclusions contrasts.

A natural monotonicity-based idea is to calculate Λ(1+χB) for several small test sets
B ⊂ Ω (e.g., small balls). By monotonicity, we know that

B ⊆ D implies that Λ(1 + χB) ⪰ Ŷ .

Hence, if we mark each ball B that fulfills the montonicity test Λ(1 + χB) ⪰ Ŷ , we
can be guaranteed that every ball inside the unknown inclusion gets marked. But, to
make this a mathematically rigorous method, we also have to make sure that balls
B ̸⊆ D do not get marked. We can prove this using the idea of localized potentials
from the last lecture.

Lemma 3.2. Let Ŷ = Λ(1+χD) where the inclusion D is open, ∂D is a null set, and
D ⊂ Ω has a connected complement. Then for every open ball B ⊆ Ω

B ⊆ D if and only if Λ(1 + χB) ⪰ Ŷ .

In particular, D is uniquely determined by knowledge of Ŷ = Λ(1 + χD).

Proof. Since ∂D is a null set, B ⊆ D implies that 1 + χB ≤ 1 + χD pointwise a.e., so
that, by monotonicity, Λ(1 + χB) ⪰ Λ(1 + χD) = Ŷ .

It remains to prove that Λ(1+χB) ⪰ Y implies B ⊆ D. We show this by contraposi-
tion, and assume that B ̸⊆ D. Let gk ∈ L2

⋄(∂Ω), and uk ∈ H1
⋄ (Ω) denote the localized

potentials from Theorem 2.3 for the conductivity 1+χB (which can be shown to fulfill
the unique continuity property). Then the first part of the monotonicity inequality
(2.1) yields that

ˆ
∂Ω

gk(Λ(1 + χB)− Ŷ )gk ds ≤
ˆ
Ω

(1 + χD)− (1 + χB)|∇uk|2 dx

=

ˆ
D

|∇uk|2 dx−
ˆ
B

|∇uk|2 dx → −∞.

This shows that, for sufficiently large k ∈ N,
ˆ
∂Ω

gk(Λ(1 + χB)− Ŷ )gk ds < 0,

and thus Λ(1 + χB) ̸⪰ Ŷ .

3.3. Linearized monotonicity tests and indefinite inclusion detection.
A numerical implementation of the monotonicity tests in Lemma 3.2 requires the
computation of Λ(1+χB), i.e., PDE-solutions, for a large number of test balls B. But
our combination of the monotonicity estimate with localized potentials, also allows us
to develop the following linearized variant of the monotonicity tests that only require
the homogeneous PDE-solution for σ = 1. Let us stress, that the linearized tests are
not merely a numerical approximation, but that they still recover the exact shape.

Lemma 3.3. Let Ŷ = Λ(1+χD) where the inclusion D is open, ∂D is a null set, and
D ⊂ Ω has a connected complement. Then for every open set B ⊆ Ω

B ⊆ D if and only if Λ(1) +
1

2
Λ′(1)χB ⪰ Ŷ .
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Proof. Using the second inequality in (2.2) we obtain that, for all g ∈ L2
⋄(∂Ω),〈

g, (Ŷ − Λ(1)− 1
2Λ

′(1)χB)g
〉
= ⟨g, (Λ(1 + χD)− Λ(1)) g⟩ − 1

2 ⟨g,Λ
′(1)χBg⟩

≤
ˆ
Ω

−χD

1 + χD
|∇ug

1|2 dx+ 1
2

ˆ
B

|∇ug
1|2 dx = − 1

2

ˆ
D

|∇ug
1|2 dx+ 1

2

ˆ
B

|∇ug
1|2 dx,

where ug
1 is the solution of the EIT equation for σ = 1. Hence,

B ⊆ D implies Ŷ − Λ(1)− 1

2
Λ′(1)χB ⪯ 0.

To show the converse, we use the first inequality in (2.2) to obtain, for all g ∈ L2
⋄(∂Ω),〈

g, (Ŷ − Λ(1)− 1
2Λ

′(1)χB)g
〉
≥ −
ˆ
D

|∇ug
1|2 dx+ 1

2

ˆ
B

|∇ug
1|2 dx.

If B ̸⊆ D, then we can find a sequence of localized potentials ugk
1 , so that

ˆ
D

|∇ugk
1 |2 dx → 0, and

ˆ
B

|∇ugk
1 |2 dx → ∞.

Hence,

B ̸⊆ D implies ∃g ∈ L2
⋄(∂Ω) :

〈
g, (Ŷ − Λ(1)− 1

2Λ
′(1)χB)g

〉
> 0,

so that the assertion is proven.

Unlike other inclusion detection methods, the monotonicity method can also rigor-
ously handle the case of indefinite inclusions, i.e. in a settings where some regions
have a higher conductivity than the background, and other regions have a lower con-
ductivity. Again, we demonstrate this on a sample example.

Lemma 3.4. Let Ŷ = Λ(1+χD+− 1
2χD−) where the inclusions D+, D− ⊆ Ω are open,

D
+

and D
−

are disjoint, and D
+ ∪D

− ⊂ Ω has a connected complement. Then, for
every closed C ⊂ Ω with null set ∂C and connected complement

D+ ∪D− ⊆ C if and only if Λ(1 + χC) ⪯ Ŷ ⪯ Λ(1− 1
2χC)

if and only if Λ(1) + Λ′(1)χC ⪯ Ŷ ⪯ Λ(1)− Λ′(1)χC .

Proof. Let D+ ∪D− ⊆ C. Then

1 + χD+ − 1
2χD− ≤ 1 + χD+ ≤ 1 + χC ,

and thus, by monotonicity, Λ(1 + χC) ⪯ Ŷ . Moreover, by Theorem 3.1(a),

Ŷ − Λ(1) ⪰ Λ′(1)(χD+ − 1
2χD−) ⪰ Λ′(1)χC .

Likewise, D+ ∪D− ⊆ C also implies that

1− 1
2χC ≤ 1 + χD+ − 1

2χD− ,
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so that, by monotonicity, Λ(1 − 1
2χC) ⪰ Ŷ . Morever, by the second inequality in

(2.2), for all g ∈ L2
⋄(∂Ω),〈

g,
(
Ŷ − Λ(1)

)
g
〉
≤
ˆ
Ω

( −χD+ + 1
2χD−

1 + χD+ − 1
2χD−

)
|∇ug

1|2 dx

≤
ˆ
Ω

( 1
2χD−

1 + χD+ − 1
2χD−

)
|∇ug

1|2 dx =

ˆ
D−

|∇ug
1|2 dx

≤
ˆ
C

|∇ug
1|2 dx = −⟨g,Λ′(1)χCg⟩ ,

which shows Ŷ ⪯ Λ(1)− Λ′(1)χC .

Now assume that D+ ∪ D− ̸⊆ C. Then, either D+ ̸⊆ C, or D− ̸⊆ C. In the first
case, D+ ̸⊆ C, we can find a sequence of localized potentials ugk

1 for the conductivity
σ = 1 with ˆ

D+

|∇ugk
1 |2 dx → ∞, and

ˆ
C

|∇ugk
1 |2 dx → 0.

Hence, using the second inequality in (2.2),〈
gk, (Ŷ − Λ(1)− Λ′(1)χC)gk

〉
≤
ˆ
Ω

−χD+ + 1
2χD−

1 + χD+ − 1
2χD−

|∇ugk
1 |2 dx+

ˆ
C

|∇ugk
1 |2 dx

≤ −1

2

ˆ
D+

|∇ugk
1 |2 dx+

ˆ
C

|∇ugk
1 |2 dx → −∞,

which shows that Ŷ ̸⪰ Λ(1) + Λ′(1)χC . Since, by convexity, Λ(1 + χC) ⪰ Λ(1) +
Λ′(1)χC , it also follows that Ŷ ̸⪰ Λ(1) + Λ′(1)χC .

In the second case, D− ̸⊆ C, we can argue analogously and obtain that Ŷ ̸⪯ Λ(1 −
1
2χC), and that Ŷ ̸⪯ Λ(1)− Λ′(1)χC .

Similar results can be derived for the case of a non-homogeneous (but known) back-
ground conductivity, for inclusions with varying conductivity contrast, and for partial
boundary data.

3.4. Noisy data and finitely many measurements. The monotonicity tests
can be stably implemented in the following sense. Let A,B ∈ L(L2

⋄(∂Ω)) be symmetric
compact operators for which we want to test whether A ⪯ B.

We assume that we only now a noisy version of A with ∥Aδ − A∥ < δ, where δ > 0
is the noise level, and ∥ · ∥ is the spectral norm on L(L2

⋄(∂Ω)). Then, we implement
the regularized monotonicity tests and

check whether Aδ ⪯ B + δI.

• If A ⪯ B then the regularized tests will always give the correct answer ”yes”.

• If A ̸⪯ B then, by compactness, B−A possesses a negative eigenvalue −λ < 0.
Hence, for δ < λ

2 , A−B ̸⪯ 2δI, and thus Aδ ̸⪯ B+δI, so that the regularized
test will give the correct answer ”no”.

This shows that every monotonicity test can already be decided correctly if the mea-
surement error is below a certain threshold. Moreover, for finitely many measure-
ments, Fm possesses the same monotonicity properties as Λ, and localized potentials
can be arbitrarily well approximated if sufficiently many measurements are being used.
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Hence, every single monotonicity test can already be correctly decided from noisy
finitely many measurements. We summarize this on the example from Lemma 3.3.

Lemma 3.5. Let D be an open inclusion with null set ∂D, and let D ⊂ Ω have a
connected complement. Let Y δ ∈ Rm×m be a symmetric matrix, with

∥Y δ − Fm(1 + χD)∥2 < δ for some noise level δ > 0.

Then for every open ball B ⊆ Ω:

(a) It holds that

B ⊆ D implies Fm(1 + χB) ⪰ Y δ − δI.

(b) For sufficiently small noise level, and sufficiently many measurements,

B ̸⊆ D implies Fm(1 + χB) ̸⪰ Y δ − δI.

Note that in (b), the allowed noise level and the required number of measurements
depend on D on B.

Proof. This can be proven as outlined above.

3.5. Some literature and further reading. The idea of monotonicty tests
was introduced by Tamburrino and Rubinacci [15]. The rigorous justification of the
method was given in [11] by proving the converse monotonicity implications. The
results in this lecture are a simplified variant of those in [11], where more general
variants with spatially varying conductivites in the background and in the inclusions
can be found. The fact that linearized monotonictity tests can still recover the exact
shape is in line with the results [10] showing that linearization errors do not affect
shape reconstructions.
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4. Uniqueness and Lipschitz stability for finitely many unknowns. We
now turn to the pixel-based setting, where one aims to reconstruct the conductivity
only up to a certain resolution.

4.1. The pixel partition. We assume that Ω is decomposed into n ∈ N pixels,
i.e.,

Ω =

n⋃
j=1

Pj .

where P1, . . . , Pn ⊆ Ω are non-empty, pairwise disjoint subdomains with Lipschitz
boundaries. We furthermore assume that the pixels are numbered according to their
distance from the boundary part Σ, so that the following holds: For any j ∈ {1, . . . , n}
we define

Qj :=
⋃
i>j

Pi

and assume that, for all j = 1, . . . , n, the complement of Qj in Ω is connected and
contains a non-empty relatively open subset of Σ.

We will consider conductivity coefficients σ ∈ L∞
+ (Ω) that are piecewise constant with

respect to this pixel partition, and assume that we know upper and lower bounds,
b > a > 0. Hence,

σ(x) =

n∑
j=1

σjχPj
(x) with σ1, . . . , σn ∈ [a, b] ⊂ R+,

and χPj
: Ω → R denoting the characteristic functions on Pj . In the following, with

a slight abuse of notation, we identify such a piecewise constant function σ : Ω → R
with its coefficient vector σ = (σ1, . . . , σn)

T ∈ Rn. Accordingly, we now consider Λ
as a non-linear operator

Λ : Rn
+ → L(L2

⋄(∂Ω)),

and consider the problem to

reconstruct σ ∈ [a, b]n ⊂ Rn
+ from Λ(σ) ∈ L(L2

⋄(∂Ω)).

Here, and in the following, Rn
+ := (0,∞)n denotes the space of all vectors in Rn

containing only positive entries.

Likewise, we restrict the measurement operator in the case of finitely many measure-
ment, i.e., we consider

F : Rn
+ → Rm×m,

and the (now fully finite-dimensional) inverse problem to

reconstruct σ ∈ [a, b]n ⊂ Rn
+ from Fm(σ) ∈ Rm×m.
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4.2. Monotonicity, convexity, and localized potentials. Our results of the
previous lectures clearly also hold for the restriction of Λ to the pixel-based setting.
Thus, Λ : Rn

+ → L(L2
⋄(∂Ω)), and Fm : Rn

+ → Rm×m, are Fréchet differentiable with
continuous derivative

Λ′ : Rn
+ → L(Rn,L(L2

⋄(∂Ω))), and F ′
m : Rn

+ → L(Rn,Rm×m).

For all σ ∈ Rn
+, and d ∈ Rn, the directional derivative Λ′(σ)d ∈ L(L2

⋄(∂Ω)) is compact
and selfadjoint, and F ′

m(σ)d ∈ Rm×m is a symmetric matrix.

Moreover, Λ, and F , are both monotonically decreasing, and convex, i.e., for all
σ, τ ∈ Rn

+, and 0 ≤ d ∈ Rn,

Λ′(σ)d ⪯ 0, and Λ(τ)− Λ(σ) ⪰ Λ′(σ)(τ − σ), (4.1)

F ′
m(σ)d ⪯ 0, and Fm(τ)− Fm(σ) ⪰ F ′

m(σ)(τ − σ). (4.2)

We can also write the localized potentials result in a pixel-based version. For this,
we introduce the following notation. As before, the j-th unit vector is denoted by
ej ∈ Rn. We write 1 := (1, 1, . . . , 1)T ∈ Rn for the vector containing only ones, and
we write e′j := 1− ej for the vector containing ones in all entries except the j-th. We

furthermore split e′j = e+j + e−j , where

e+j :=
∑

i=j+1,...,n

ei, and e−j :=
∑

i=1,...,j−1

ei.

Note that we use the usual convention of empty sums being zero, so that e+n = 0 ∈ Rn,
and e−1 = 0 ∈ Rn.

Lemma 4.1. For all C > 0, j ∈ {1, . . . , n}, and σ ∈ Rn
+, it holds that

Λ′(σ)(ej − Ce+j ) ̸⪰ 0, (4.3)

and, for sufficiently large m ∈ N, it also holds that

F ′
m(σ)(ej − Ce+j ) ̸⪰ 0. (4.4)

Proof. By Theorem 1.3, we know that, for all g ∈ L2
⋄(∂Ω),〈

g,Λ′(σ)(ej − Ce+j )g
〉
= −

ˆ
Ω

(χPj
− CχQj

)|∇ug
σ|2 dx

= C

ˆ
Qj

|∇ug
σ|2 dx−

ˆ
Pj

|∇ug
σ|2 dx.

Using a slightly more general version of Theorem 2.3, cf. the references in subsection
2.4, one can show that there exists a sequence (gk)k∈N so that the corresponding
solutions uk := ugk

σ fulfill

ˆ
Qj

|∇ug
σ|2 dx → 0, and

ˆ
Pj

|∇ug
σ|2 dx → ∞.

Hence, we can find g ∈ L2
⋄(∂Ω) with〈

g,Λ′(σ)(ej − Ce+j )g
〉
< 0,
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so that (4.3) is proven.

Recall that the sequence (fk)k∈N in the definition of Fm was assumed to have dense
span in L2

⋄(∂Ω). Hence, we can approximate g with a finite linear combination g̃ =∑m
k=1 vkfk, vk ∈ R, and obtain (for sufficiently large m ∈ N)〈

g̃,Λ′(σ)(ej − Ce+j )g̃
〉
< 0.

Writing v = (v1, . . . , vm)T ∈ Rm, it follows that

vTF ′(σ)(ej − Ce+j )v =
〈
g̃,Λ′(σ)(ej − Ce+j )g̃

〉
< 0,

so that (4.4) is also proven.

4.3. Uniqueness and Lipschitz stability for finitely many unknowns.
For our fixed pixel partition, and known bounds b > a > 0, we will now prove
unique solvability and Lipschitz stability for the inverse problem of reconstructing
σ ∈ [a, b]n ⊂ Rn

+ from continuous data Λ(σ), and from finitely many measurements
Fm(σ).

Theorem 4.2. There exists c > 0 such that

∥Λ(σ)− Λ(τ)∥L(L2
⋄(Σ)) ≥ c∥σ − τ∥ for all σ, τ ∈ [a, b]n.

For sufficiently many measurements m ∈ N, there also exists c > 0 such that

∥Fm(σ)− Fm(τ)∥L(L2
⋄(Σ)) ≥ c∥σ − τ∥ for all σ, τ ∈ [a, b]n.

Note that this shows that for all pixel partitions, i.e., for any fixed desired resolution,
Λ(σ) ∈ L(L2

⋄(Σ)) always uniquely determines σ ∈ Rn
+. It also shows that there exists

a finite number of measurements, so that Fm(σ) uniquely determines σ ∈ [a, b]n, but
the number of required number of measurements will depend on the pixel partition, the
number of pixels, and the a-priori bounds b > a > 0.

Proof. In the following, ⟨·, ·⟩, always denotes the L2
⋄(∂Ω)-scalar product. We will

prove Theorem 4.2 in three steps.

(a) We first use the estimate (4.1) to bound the difference of the non-linear Neumann-
to-Dirichlet operators by an expression containing their linearized counterparts.
The Neumann-to-Dirichlet-operators are self-adjoint so that for all σ, τ ∈ Rn

+

∥Λ(σ)− Λ(τ)∥ = sup
g∈L2

⋄(∂Ω),∥g∥=1

|⟨g, (Λ(σ)− Λ(τ)) g⟩| .

We apply (4.1), also with interchanged roles of σ and τ , to estimate this expres-
sion, and obtain that for all σ, τ ∈ Rn

+, σ ̸≡ τ , and all g ∈ L2
⋄(∂Ω)

|⟨g, (Λ(σ)− Λ(τ)) g⟩|
= max{⟨g, (Λ(τ)− Λ(σ)) g⟩ , ⟨g, (Λ(σ)− Λ(τ)) g⟩}
≥ max{⟨Λ′(σ)(τ − σ)g, g⟩ , ⟨Λ′(τ)(σ − τ)g, g⟩}

= ∥σ − τ∥ max

{〈
Λ′(σ)

τ − σ

∥σ − τ∥
g, g

〉
,

〈
Λ′(τ)

σ − τ

∥σ − τ∥
g, g

〉}
= ∥σ − τ∥f(σ, τ, τ − σ

∥σ − τ∥
, g),
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where f : [a, b]n × [a, b]n ×K × L2
⋄(Σ) → R is defined by

f(s, t, κ, g) := max {⟨(Λ′(s)κ) g, g⟩ ,−⟨(Λ′(t)κ) g, g⟩} ,

and K := {κ ∈ Rn : ∥κ∥ = 1}.
Hence, for all σ, τ ∈ [a, b]n,

∥Λ(σ)− Λ(τ)∥
∥σ − τ∥

= sup
g∈L2

⋄(∂Ω),∥g∥=1

|⟨g, (Λ(σ)− Λ(τ)) g⟩|
∥σ − τ∥

≥ sup
g∈L2

⋄(∂Ω),∥g∥=1

f(σ, τ,
τ − σ

∥σ − τ∥
, g)

≥ inf
(s,t,κ)

∈[a,b]n×[a,b]n×K

sup
g∈L2

⋄(∂Ω),∥g∥=1

f(s, t, κ, g).

(b) The continuity of Λ′ implies that also f is continuous. Hence, the function

(s, t, κ) 7→ sup
g∈L2

⋄(Σ),∥g∥=1

f(s, t, κ, g)

is lower semicontinuous and thus attains its minimum over the compact set
[a, b]n × [a, b]n ×K.
Hence, there exists (σ̂, τ̂ , κ̂) ∈ [a, b]n × [a, b]n ×K so that

inf
(s,t,κ)

∈[a,b]n×[a,b]n×K

sup
g∈L2

⋄(Σ),∥g∥=1

f(s, t, κ, g) = sup
g∈L2

⋄(Σ),∥g∥=1

f(σ̂, τ̂ , κ̂, g),

and thus

∥Λ(σ)− Λ(τ)∥ ≥ ∥σ − τ∥ sup
g∈L2

⋄(Σ),∥g∥=1

f(σ̂, τ̂ , κ̂, g).

(c) It only remains to show that

sup
g∈L2

⋄(Σ),∥g∥=1

f(σ̂, τ̂ , κ̂, g) > 0. (4.5)

To prove this, let κ̂1, . . . , κ̂n ∈ [−1, 1] denote the entries of κ̂ ∈ K ⊂ Rn, and let
j ∈ {1, . . . , n} denote the index of the first non-zero entry. We now distinguish
the two cases, κ̂j > 0, and κ̂j < 0:
(i) If κ̂j > 0, then κ̂ ≥ κ̂jej − e+j . Using Lemma 4.1, we have that

∃g ∈ L2
⋄(Σ) :

〈
g,Λ′(τ̂)(ej −

1

κ̂j
e+j )g

〉
< 0,

so that we obtain, using (4.1),

f(σ̂, τ̂ , κ̂, g) ≥ −⟨(Λ′(τ̂)κ̂) g, g⟩ ≥ −
〈(
Λ′(τ̂)

(
κ̂jej − e+j

))
g, g

〉
= − 1

κ̂j

〈(
Λ′(τ̂)

(
ej −

1

κ̂j
e+j

))
g, g

〉
> 0.

(ii) If κ̂j < 0, then κ̂ ≤ κ̂jej + e+j . Then, again, by Lemma 4.1

∃g ∈ L2
⋄(Σ) :

〈
g,Λ′(σ̂)(ej +

1

κ̂j
e+j )g

〉
< 0,
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so that we obtain, using (4.1),

f(σ̂, τ̂ , κ̂, g) ≥ ⟨(Λ′(σ̂)κ̂) g, g⟩ ≥
〈(
Λ′(σ̂)

(
κ̂jej + e+j

))
g, g

〉
=

1

κ̂j

〈(
Λ′(τ̂)

(
ej +

1

κ̂j
e+j

))
g, g

〉
> 0.

Hence, in both cases, (4.5), and thus the first assertion of Theorem 4.2 is proven.

The second assertion follows with the same proof by replacing Λ(σ) with Fm(σ).

4.4. Outlook: Reformulation as a convex semidefinite program. The
results in this lecture show that (with sufficiently many measurements), Ŷ = Fm(σ̂)
uniquely determines σ̂ ∈ [a, b]n. A natural approach to solve this inverse problem is
to minimize the least squares residual functional

minimize ∥Ŷ − Fm(σ)∥2
F → min! subject to σ ∈ [a, b]n.

or a regularized variant thereof. However, this functional is non-convex, and numerical
algorithms based on this strategy usually suffer from only local convergence.

It is therefore desirable to utilize the Loewner convexity properties to find convex
reformulations of the EIT problem. A recent result shows that, for sufficiently many
measurements, there exists c ∈ Rn

+, so that for all σ̂ ∈ [a, b]n, and Ŷ := Fm(σ̂), the
minimization problem

minimize cTσ → min! subject to σ ∈ [a, b]n, Fm(σ) ⪯ Ŷ , (4.6)

possesses a unique minimizer and this minimizer is σ̂. Note that this is a linear
minimization problem under a convex non-linear semidefinite constraint.

4.5. Some literature and further reading. This lecture is based on [6], where
the result is also proven for a more realistic electrode model. The reformulation as a
convex semidefinte program is shown in [9], where also the case of noisy measurements
is treated. We also refer to [8] for an easy-to-read variant of the convex semidefinite
reformulation for a related but simpler inverse Robin coefficient problem.
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