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Electrical impedance tomography (EIT)
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Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω ⊂Rd (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω) → L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Challenges in idealized EIT

Mathematical idealization of EIT ↝ Calderón problem
▸ infinitely many unknowns σ ∈ L∞+ (Ω)
▸ infinitely many measurements Λ(σ) ∈ L(L2

◇(∂Ω))
▸ nonlinear forward map σ ↦Λ(σ)

Mathematical challenges
▸ Uniqueness? Does Λ(σ) determine σ?
▸ Stability? Λ

−1 ∶ Λ(σ) ↦ σ continuous?
▸ Convergence (local/global)? How to determine σ from Λ(σ)?

Consequences for practical EIT?
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EIT in practice

▸ Finitely many unknowns, σ pcw. const.
on given resolution Ω = ⋃n

i=1 ωi

▸ Finitely many measurements

∫
∂Ω

g jΛ(σ)gk ds

for given currents g1, . . . ,gm ∈ L2
◇(∂Ω)

ωi

Ω

Finite-dimensional inverse problem: Determine

σ =
⎛
⎜
⎝

σ1
⋮

σn

⎞
⎟
⎠
∈Rn
+ from F(σ) = (∫

∂Ω

g jΛ(σ)gk ds)
m

j,k=1
∈Rm×m.
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Mathematical challenges for practical EIT

Inverse problem: Determine σ ∈Rn
+ from Y = F(σ) ∈Rm×m.

For a fixed desired resolution:
▸ How many measurements uniquely determine σ?
▸ Stability / error estimates for noisy data Y δ ≈ F(σ)?
▸ Numerical algorithm to determine σ ∈Rn

+ from Y δ ≈ F(σ)?
▸ Global/local convergence of algorithm?

Next slides: The problem of local convergence
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Simple example: EIT with 2 unknowns & 6 bndry. currents

Ω: unit circle

F ∶ R2
+→R6×6

F (σ1
σ2
) ∶= (∫

∂Ω

g jΛ(σ)gk)
6

j,k=1

with trigonometric currents

{g1, . . . ,g6} = {sin(ϕ), . . . ,cos(3ϕ)}
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Inverse problem: Reconstruct σ̂ ∈R2
+ from Ŷ = F(σ̂) ∈R6×6

Natural approach: Least squares data fitting

minimize ∥F(σ)−Ŷ∥2
F (+ Regularization)
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Problem of local convergence

▸ Least squares data fitting functional not convex
▸ Error of Matlab’s lsqnonlin highly depends on initial values

Can we derive globally convergent algorithms?
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Monotonicity and Convexity
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The Monotonicity Lemma

Lemma. (First appearance: Kang/Seo/Sheen 1997, Ikehata 1998)

∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds ≥ ∫
Ω

(σ2−σ1)∣∇ug
σ2 ∣

2 dx

for all σ1,σ2 ∈ L∞
+
(Ω), g ∈ L2

◇
(∂Ω).

▸ Monotonicity w.r.t. Loewner order:

σ1 ≤ σ2 Ô⇒ Λ(σ1) ⪰Λ(σ2)

↝ Inclusion detection method (Tamburrino/Rubinacci 2002)

▸ Localized potentials (H. 2008):

∃(gk)k∈N ∶ ∫
D1

∣∇ugk
σ ∣2 dx→∞, ∫

D2

∣∇ugk
σ ∣2 dx→ 0.

↝ Converse monotonicity holds for inclusion detection.
↝ Monotonicity method yields exact shape (H./Ullrich 2013).
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Monotonicity and Convexity

Lemma.

∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds ≥ ∫
Ω

(σ2−σ1)∣∇ug
σ2 ∣

2 dx

= ∫
∂Ω

gΛ
′(σ2)(σ1−σ2)g ds.

for all σ1,σ2 ∈ L∞
+
(Ω), g ∈ L2

◇
(∂Ω).

↝ For all σ1,σ2 ∈ L∞+ (Ω): Λ(σ1)−Λ(σ2) ⪰Λ
′(σ2)(σ1−σ2).

↝ Convexity: For all σ1,σ2 ∈ L∞+ (Ω), t ∈ [0,1]

Λ((1− t)σ1+ tσ2) ⪯ (1− t)Λ(σ1)+ tΛ(σ2).

The "monotonicity lemma" also implies convexity.

B. Harrach: Monotonicity and Convexity in inverse coefficient problems



Convexity for the simple example

Inverse problem: Reconstruct σ̂ ∈R2
+ from Ŷ = F(σ̂) ∈R6×6

σ̂ = (1,1)T σ̂ = (0.5,1)T σ̂ = (1.5,0.5)T
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Observation.

σ̂ is the lower left corner of the convex set F(σ) ⪯ Ŷ .

(”⪯”: Loewner / semidefiniteness order)
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Mathematical formulation

σ̂ = (1,1)T σ̂ = (0.5,1)T σ̂ = (1.5,0.5)T
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Conjecture. ∃c ∈Rn so that true solution σ̂ minimizes

cT
σ =

n

∑
i=1

ciσi→min! s.t. σ ∈ [a,b]n, F(σ) ⪯ Ŷ .

For a similar but simpler Robin problem:
▸ Conjecture holds with c = 1 (H., Optim. Lett. 2021)
▸ Global Newton convergence is possible (H., Numer. Math. 2021)
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Convex reformulation for EIT

Theorem. (H., SIMA 2023)

If sufficiently many measurements are taken, then:
▸ EIT forward mapping F ∶ [a,b]n→ Sm ⊂Rm×m is injective.
▸ Derivative F ′(σ) is injective for all σ ∈ [a,b]n.
▸ There exists c ∈Rn

+ so that for all σ̂ ∈ [a,b]n, Ŷ =Λ(σ̂):
σ̂ is the unique solution of the convex problem

minimize cT
σ =

n

∑
i=1

ciσi s.t. σ ∈ [a,b]n, F(σ) ⪯ Ŷ .

The Calderón problem with finitely many unknowns is equivalent to
convex semidefinite optimization
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Stability and error estimates

Theorem (continued). (H., SIMA 2023)

There exists λ > 0 so that
▸ for all σ̂ ∈ [a,b]n, and Ŷ ∶=Λ(σ̂),
▸ and all δ > 0, and Y δ ∈Sm ⊂Rm×m, with ∥Y δ −Ŷ∥ ≤ δ ,

the convex semidefinite optimization problem

minimize cT
σ =

n

∑
i=1

ciσi s.t. σ ∈ [a,b]n, F(σ) ⪯Y δ +δ I.

possesses a minimizer σ
δ . Every such minimizer fulfills

∥σδ − σ̂∥ c,∞ ≤
n−1

λ
δ .

(∥ ⋅ ∥c,∞: c-weighted maximum norm)

Error estimates for noisy data Y δ ≈ Ŷ also hold.
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Non-constructive results vs. explicit estimates

The Calderón problem with finitely many unknowns
▸ is uniquely solvable for sufficiently many measurements
▸ is equivalent to some linear minimization over convex set
▸ allows some error estimate for noisy data

But (for a given setting and desired resolution)...
▸ How many measurements do we need for a given resolution?
▸ What linear functional should we minimize? (c =?)
▸ What are the constants in the error estimate? (λ =?)

Next slides: Explicit answers, but only for a Robin problem
(similar but simpler than EIT)
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An inverse Robin coefficient problem
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EIT for corrosion detection

Cement pillar

Rebar corrosion

Electrodes

Non-destructive EIT-based corrosion detection:
▸ Apply electric currents on outer boundary ∂Ω

▸ Measure necessary voltages

↝ Detect corrosion on inner boundary Γ = ∂D
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Idealized mathematical model: Robin PDE

Electric potential u ∶ Ω→R solves

∆u = 0 in Ω∖Γ,(1)

∂νu∣∂Ω = g on ∂Ω,(2)

JuKΓ = 0 on Γ,(3)

J∂νuKΓ = σu on Γ(4)
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Inverse Problem: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2(∂Ω) → L2(∂Ω), g↦ u∣∂Ω,

where u solves Robin PDE (1)–(4).
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Finitely many measurements and unknowns

▸ Finitely many measurements:

∫
∂Ω

g jΛ(σ)gk ds for finitely many g1, . . . ,gm

▸ Finite desired resolution:

σ =
n

∑
j=1

σ jχΓ j with σ j ∈R, j = 1, . . . ,n

with partition Γ = ⋃n
j=1 Γ j

▸ A-priori bounds: σ ∶= (σ1, . . . ,σn)T ∈ [a,b]n, b > a > 0 known

Finite-dimensional non-linear inverse problem: Determine

σ = (σ j)nj=1 ∈ [a,b]n from F(σ) ∶= (∫
∂Ω

g jΛ(σ)gk ds)
m

j,k=1
∈Rm×m
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Explicit answers 1/3: "what linear cost functional?"

Theorem. (H., Optim. Lett. 2021)

If sufficiently many measurements are taken, then
▸ Ŷ ∶= F(σ̂) ∈Rm×m uniquely determines σ̂ ∈ [a,b]n.
▸ σ̂ is the unique solution of

minimize ∥σ∥1 =
n

∑
j=1

σ j s.t. σ ∈ [a,b]n, F(σ) ⪯ Ŷ .

▸ The constraint set σ ∈ [a,b]n, F(σ) ⪯ Ŷ is convex.

Explicitly known cost functional (c = 1)
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Explicit answers 2/3: "how many measurements?"

Theorem. (H., Optim. Lett. 2021)

▸ Suff. many measurements are taken if λmax(F ′(z j,k)d j) > 0 for

z j,k ∶= a
2 e′j +(a+k a

4(n−1))e j ∈Rn
+, d j ∶= 2b−a

a (n−1)e′j − 1
2 e j ∈Rn,

with j = 1, . . . ,n, k = 1, . . . ,⌈ 4(n−1)b
a ⌉−4n+5.

▸ This criterion is fulfilled if (g j)∞j=1 has dense span in L2(∂Ω),
and sufficiently many g j are used.

(e j ∈Rn: j-th unit vector, e′j ∶= 1−e j ∈Rn: negated j-th unit vector)

Explicitly computable criterion (finitely many PDE-solutions!)
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Explicit answers 3/3: "constants in error estimate?"

Theorem. (H., Optim. Lett. 2021)

▸ Let the criterion hold with lower bound λ > 0.
▸ Let δ > 0, and Y δ ∈Rm×m be symmetric with ∥Ŷ −Y δ ∥2 ≤ δ .

Then there exist solutions of

minimize ∥σ∥1 =
n

∑
j=1

σ j s.t. σ ∈ [a,b]n, F(σ) ⪯Y δ +δ I.

and every such minimum σ
δ fulfills

∥σ̂ −σ
δ ∥∞ ≤

2δ(n−1)
λ

Explicitly computable error estimate
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Conclusions 1/2

For elliptic coefficient inverse problems
▸ least-squares residuum functionals may be highly non-convex
▸ local minima are usually useless

Possible remedy
▸ utilize monotonicity & convexity with respect to Loewner order

Equivalent convex reformulations are possible
▸ globally convergent solution algorithms are possible
▸ error estimates for noisy data are possible

Explicit (computable) resolution and error estimates
▸ are possible, at least for simple problems
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Conclusions 2/2 (now getting very subjective)

Some future challenges in inverse problems in PDEs:

We need to progress and extend. . .

FROM: Uniqueness results for infinite-dimensional DtN/NtD
TO: Resolution attainable from finitely many measurements

FROM: Stability results
TO: Error estimates (with computable constants)

FROM: Local convergence and non-convex residuum functionals
TO: Global convergence and convex functionals

Loewner monotonicity & convexity can help with these challenges.

B. Harrach: Monotonicity and Convexity in inverse coefficient problems


