

Monotonicity and Convexity in inverse coefficient problems

Bastian Harrach

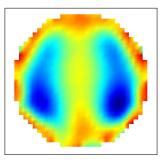
http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

2024 International Conference on Inverse Problems
Theory & Computation
Shanghai Centre for Mathematical Sciences, Fudan University
Shanghai, China, June 24–28, 2024.

Electrical impedance tomography (EIT)

Electrical impedance tomography (EIT)



- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla u) = 0, \quad x \in \Omega \subset \mathbb{R}^d$$
 (1)

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega},\sigma\partial_{\nu}u|_{\partial\Omega}): u \text{ solves (1)}\}?$$

Equivalent: Recover σ from **Neumann-to-Dirichlet-Operator**

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial \Omega} = g$.

Challenges in idealized EIT

Mathematical idealization of EIT → Calderón problem

- infinitely many unknowns $\sigma \in L^{\infty}_{+}(\Omega)$
- ▶ infinitely many measurements $\Lambda(\sigma) \in \mathcal{L}(L^2_{\diamond}(\partial\Omega))$
- ▶ nonlinear forward map $\sigma \mapsto \Lambda(\sigma)$

Mathematical challenges

- Uniqueness? Does $\Lambda(\sigma)$ determine σ ?
- ► Stability? Λ^{-1} : $\Lambda(\sigma) \mapsto \sigma$ continuous?
- Convergence (local/global)? How to determine σ from $\Lambda(\sigma)$?

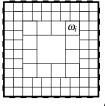
Consequences for practical EIT?

EIT in practice

- Finitely many unknowns, σ pcw. const. on given resolution $\Omega = \bigcup_{i=1}^{n} \omega_i$
- Finitely many measurements

$$\int_{\partial\Omega}g_j\Lambda(\sigma)g_k\,\mathrm{d}s$$

for given currents $g_1, \ldots, g_m \in L^2_{\diamond}(\partial \Omega)$



Ω

Finite-dimensional inverse problem: Determine

$$\sigma = \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_n \end{pmatrix} \in \mathbb{R}^n_+ \quad \text{from } F(\sigma) = \left(\int_{\partial \Omega} g_j \Lambda(\sigma) g_k \, ds \right)_{j,k=1}^m \in \mathbb{R}^{m \times m}.$$

Mathematical challenges for practical EIT

Inverse problem: Determine $\sigma \in \mathbb{R}^n_+$ from $Y = F(\sigma) \in \mathbb{R}^{m \times m}$.

For a fixed desired resolution:

- How many measurements uniquely determine σ ?
- ▶ Stability / error estimates for noisy data $Y^{\delta} \approx F(\sigma)$?
- Numerical algorithm to determine $\sigma \in \mathbb{R}^n_+$ from $Y^\delta \approx F(\sigma)$?
- Global/local convergence of algorithm?

Next slides: The problem of local convergence

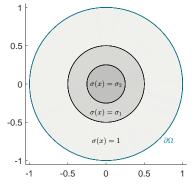
Simple example: EIT with 2 unknowns & 6 bndry. currents

Ω : unit circle

$$\begin{split} F: & \mathbb{R}_+^2 \to \mathbb{R}^{6 \times 6} \\ & F\begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} \coloneqq \left(\int_{\partial \Omega} g_j \Lambda(\sigma) g_k \right)_{j,k=1}^6 \end{split}$$

with trigonometric currents

$$\{g_1,\ldots,g_6\}=\{\sin(\varphi),\ldots,\cos(3\varphi)\}$$

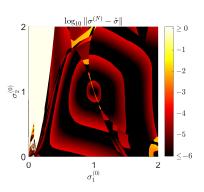


Inverse problem: Reconstruct $\hat{\sigma} \in \mathbb{R}^2_+$ from $\hat{Y} = F(\hat{\sigma}) \in \mathbb{R}^{6 \times 6}$

Natural approach: Least squares data fitting

minimize
$$||F(\sigma) - \hat{Y}||_{\mathsf{F}}^2$$
 (+ Regularization)

Problem of local convergence



- Least squares data fitting functional not convex
- Error of Matlab's lsqnonlin highly depends on initial values

Can we derive globally convergent algorithms?

Monotonicity and Convexity

The Monotonicity Lemma

Lemma. (First appearance: Kang/Seo/Sheen 1997, Ikehata 1998)

$$\int_{\partial\Omega} g(\Lambda(\sigma_1) - \Lambda(\sigma_2)) g \, ds \ge \int_{\Omega} (\sigma_2 - \sigma_1) |\nabla u_{\sigma_2}^g|^2 \, dx$$

for all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega), g \in L^2_{\diamond}(\partial \Omega)$.

Monotonicity w.r.t. Loewner order:

$$\sigma_1 \leq \sigma_2 \implies \Lambda(\sigma_1) \geq \Lambda(\sigma_2)$$

- → Inclusion detection method (Tamburrino/Rubinacci 2002)
- Localized potentials (H. 2008):

$$\exists (g_k)_{k \in \mathbb{N}} : \int_{D_1} |\nabla u_{\sigma}^{g_k}|^2 dx \to \infty, \quad \int_{D_2} |\nabla u_{\sigma}^{g_k}|^2 dx \to 0.$$

- Converse monotonicity holds for inclusion detection.
- → Monotonicity method yields exact shape (H./Ullrich 2013).

Monotonicity and Convexity

Lemma.

$$\int_{\partial\Omega} g(\Lambda(\sigma_1) - \Lambda(\sigma_2)) g \, ds \ge \int_{\Omega} (\sigma_2 - \sigma_1) |\nabla u_{\sigma_2}^g|^2 \, dx$$

$$= \int_{\partial\Omega} g \Lambda'(\sigma_2) (\sigma_1 - \sigma_2) g \, ds.$$

for all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega), g \in L^2_{\diamond}(\partial \Omega)$.

$$\rightarrow$$
 For all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega)$: $\Lambda(\sigma_1) - \Lambda(\sigma_2) \geq \Lambda'(\sigma_2)(\sigma_1 - \sigma_2)$.

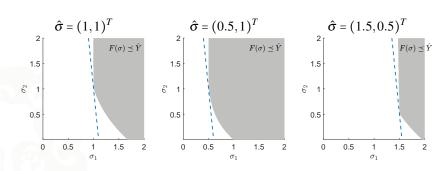
$$ightharpoonup$$
 Convexity: For all $\sigma_1, \sigma_2 \in L^{\infty}_+(\Omega), t \in [0,1]$

$$\Lambda((1-t)\sigma_1+t\sigma_2)\leq (1-t)\Lambda(\sigma_1)+t\Lambda(\sigma_2).$$

The "monotonicity lemma" also implies convexity.

Convexity for the simple example

Inverse problem: Reconstruct $\hat{\sigma} \in \mathbb{R}^2_+$ from $\hat{Y} = F(\hat{\sigma}) \in \mathbb{R}^{6 \times 6}$

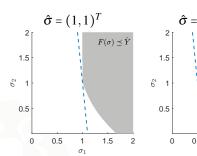


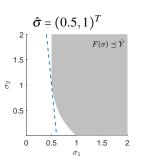
Observation.

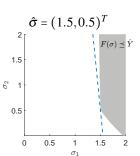
 $\hat{\sigma}$ is the lower left corner of the convex set $F(\sigma) \leq \hat{Y}$.

("≤": Loewner / semidefiniteness order)

Mathematical formulation







Conjecture. $\exists c \in \mathbb{R}^n$ so that true solution $\hat{\sigma}$ minimizes

$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i \to \min!$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$.

For a similar but simpler Robin problem:

- Conjecture holds with c = 1 (H., Optim. Lett. 2021)
- ► Global Newton convergence is possible (H., Numer. Math. 2021)

Convex reformulation for EIT

Theorem. (H., SIMA 2023)

If sufficiently many measurements are taken, then:

- ▶ EIT forward mapping $F: [a,b]^n \to \mathbb{S}_m \subset \mathbb{R}^{m \times m}$ is injective.
- ▶ Derivative $F'(\sigma)$ is injective for all $\sigma \in [a,b]^n$.
- ► There exists $c \in \mathbb{R}^n_+$ so that for all $\hat{\sigma} \in [a,b]^n$, $\hat{Y} = \Lambda(\hat{\sigma})$:

 $\hat{\sigma}$ is the unique solution of the convex problem

minimize
$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$.

The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization

Stability and error estimates

Theorem (continued). (H., SIMA 2023)

There exists $\lambda > 0$ so that

- for all $\hat{\sigma} \in [a,b]^n$, and $\hat{Y} := \Lambda(\hat{\sigma})$,
- and all $\delta > 0$, and $Y^{\delta} \in \mathbb{S}_m \subset \mathbb{R}^{m \times m}$, with $\|Y^{\delta} \hat{Y}\| \leq \delta$,

the convex semidefinite optimization problem

minimize
$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq Y^{\delta} + \delta I$.

possesses a minimizer σ^δ . Every such minimizer fulfills

$$\|\sigma^{\delta} - \hat{\sigma}\|_{c,\infty} \leq \frac{n-1}{\lambda}\delta.$$

 $(\|\cdot\|_{c,\infty}: c\text{-weighted maximum norm})$

Error estimates for noisy data $Y^{\delta} \approx \hat{Y}$ also hold.

Non-constructive results vs. explicit estimates

The Calderón problem with finitely many unknowns

- is uniquely solvable for sufficiently many measurements
- is equivalent to some linear minimization over convex set
- allows some error estimate for noisy data

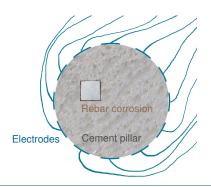
But (for a given setting and desired resolution)...

- How many measurements do we need for a given resolution?
- ▶ What linear functional should we minimize? (c =?)
- What are the constants in the error estimate? ($\lambda = ?$)

Next slides: Explicit answers, but only for a Robin problem (similar but simpler than EIT)

An inverse Robin coefficient problem

EIT for corrosion detection



Non-destructive EIT-based corrosion detection:

- Apply electric currents on outer boundary $\partial \Omega$
- Measure necessary voltages
- \rightarrow Detect corrosion on inner boundary $\Gamma = \partial D$

Idealized mathematical model: Robin PDE

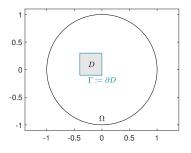
Electric potential $u: \Omega \to \mathbb{R}$ solves

(1)
$$\Delta u = 0$$
 in $\Omega \setminus \Gamma$,

(2)
$$\partial_{\nu} u|_{\partial\Omega} = g$$
 on $\partial\Omega$,

(3)
$$[\![u]\!]_{\Gamma} = 0$$
 on Γ ,

(4)
$$[\![\partial_{\nu}u]\!]_{\Gamma} = \sigma u$$
 on Γ



Inverse Problem: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2(\partial\Omega) \to L^2(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves Robin PDE (1)–(4).

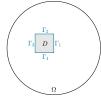
Finitely many measurements and unknowns

Finitely many measurements:

$$\int_{\partial\Omega} g_j \Lambda(\sigma) g_k \, ds \quad \text{ for finitely many } g_1, \dots, g_m$$

Finite desired resolution:

$$\sigma = \sum_{j=1}^{n} \sigma_{j} \chi_{\Gamma_{j}}$$
 with $\sigma_{j} \in \mathbb{R}, \ j = 1, \ldots, n$



with partition
$$\Gamma = \bigcup_{j=1}^{n} \Gamma_j$$

• A-priori bounds: $\sigma := (\sigma_1, \dots, \sigma_n)^T \in [a, b]^n$, b > a > 0 known

Finite-dimensional non-linear inverse problem: Determine

$$\sigma = (\sigma_j)_{j=1}^n \in [a,b]^n \quad \text{from} \quad F(\sigma) \coloneqq \left(\int_{\partial \Omega} g_j \Lambda(\sigma) g_k \, ds\right)_{j,k=1}^m \in \mathbb{R}^{m \times m}$$

Explicit answers 1/3: "what linear cost functional?"

Theorem. (H., Optim. Lett. 2021)

If sufficiently many measurements are taken, then

- $\hat{Y} := F(\hat{\sigma}) \in \mathbb{R}^{m \times m}$ uniquely determines $\hat{\sigma} \in [a,b]^n$.
- $\hat{\sigma}$ is the unique solution of

minimize
$$\|\sigma\|_1 = \sum_{j=1}^n \sigma_j$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$.

▶ The constraint set $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$ is convex.

Explicitly known cost functional (c = 1)

Theorem. (H., Optim. Lett. 2021)

- ▶ Suff. many measurements are taken if $\lambda_{\max}(F'(z_{i,k})d_i) > 0$ for $z_{j,k} := \frac{a}{2}e'_j + \left(a + k\frac{a}{4(n-1)}\right)e_j \in \mathbb{R}^n_+, \quad d_j := \frac{2b-a}{a}(n-1)e'_j - \frac{1}{2}e_j \in \mathbb{R}^n_+,$ with j = 1, ..., n, $k = 1, ..., \lceil \frac{4(n-1)b}{n} \rceil - 4n + 5$.
- ► This criterion is fulfilled if $(g_i)_{i=1}^{\infty}$ has dense span in $L^2(\partial\Omega)$, and sufficiently many g_i are used.

 $(e_j \in \mathbb{R}^n : j\text{-th unit vector}, e_j' := 1 - e_j \in \mathbb{R}^n : negated j\text{-th unit vector})$

Explicitly computable criterion (finitely many PDE-solutions!)

Theorem. (H., Optim. Lett. 2021)

- Let the criterion hold with lower bound $\lambda > 0$.
- Let $\delta > 0$, and $Y^{\delta} \in \mathbb{R}^{m \times m}$ be symmetric with $\|\hat{Y} Y^{\delta}\|_{2} \le \delta$.

Then there exist solutions of

minimize
$$\|\sigma\|_1 = \sum_{j=1}^n \sigma_j$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq Y^{\delta} + \delta I$.

and every such minimum σ^{δ} fulfills

$$\|\hat{\sigma} - \sigma^{\delta}\|_{\infty} \le \frac{2\delta(n-1)}{\lambda}$$

Explicitly computable error estimate

Conclusions 1/2

For elliptic coefficient inverse problems

- least-squares residuum functionals may be highly non-convex
- local minima are usually useless

Possible remedy

utilize monotonicity & convexity with respect to Loewner order

Equivalent convex reformulations are possible

- globally convergent solution algorithms are possible
- error estimates for noisy data are possible

Explicit (computable) resolution and error estimates

are possible, at least for simple problems

Conclusions 2/2 (now getting very subjective)

Some future challenges in inverse problems in PDEs:

We need to progress and extend...

FROM: Uniqueness results for infinite-dimensional DtN/NtD

To: Resolution attainable from finitely many measurements

FROM: Stability results

To: Error estimates (with computable constants)

FROM: Local convergence and non-convex residuum functionals

To: Global convergence and convex functionals

Loewner monotonicity & convexity can help with these challenges.