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Electrical impedance tomography (EIT)
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Electrical impedance tomography (EIT)

> Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject

B. Harrach: Autoencoder-based global concave optimization for Electrical Impedance Tomography



GOETHE

UNIVERSITAT

Calderon problem

Can we recover o € L°(Q) in
V-(ovu)=0, xeQcRF (1)
from all possible Dirichlet and Neumann boundary values

{(uloa,00vulyq) : wusolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulo,

where u solves (1) with 6dyulyq = g.
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EIT in practice
> Finitely many unknowns, ¢ pcw. const. BEEE
on given resolution Q = U, o; [
|| ;| | |
» Finitely many measurements | L]
A(0)gi ds ] N
fanJ (0)gx | T
for given currents gy, ...,gm € L2(9Q) L1
(or, analogously, measurements on electrodes) Q
Finite-dimensional inverse problem: Determine
O] m
o=|: |erR" from F(o)-= (f 2iA(0)g ds) e R
o, 9Q Jik=1
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Towards global convergence for practical EIT ONIERSITAT

Inverse problem: Determine ¢ e R} from Y = F(o) e R™".

» Highly non-linear. Each evaluation of F' requires PDE solution.
~ Are globally convergent algorithms totally out-of-reach?

In this talk:
» A concave best data fitting formulation for EIT.
» Globally convergent concave programming in low dimensions.
» Autoencoder for low-dim. parametrization of the image space.
» Using an autoencoder that preserves concavity!
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Concave best data fitting formulation for EIT
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The Monotonicity Lemma

Lemma. (First appearance: Kang/Seo/Sheen 1997, lkehata 1998)

8@ -A(@))g ds> [ (02-01)|7u” dv

forall 61,0, € L (Q), g€ L2 (0Q).

» Monotonicity w.r.t. Loewner order:
1<, — A(o))>A(o)

~ Inclusion detection method (Tamburrino/Rubinacci 2002)
> Localized potentials (H. 2008):

3(gk)keNif |Vud|* dx — oo, f |Vus* dx - 0.
D] D2

~ Converse monotonicity holds for inclusion detection.
~ Monotonicity method yields exact shape (H./Ulirich 2013).
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Monotonicity and Convexity

Lemma.
[ g0 -A(e))g ds> [ (02-01)|vue

= AQgA,(GQ)(Gl —Gz)g ds.

forall 61,0, € L (Q), g € L2(9Q).

~ Forall 61,00 € LY (Q): A(01)-A(0n) >N (02) (01— 02).
~ Convexity: For all 61,0, € L°(Q),1€[0,1]

A((1-t)o1+102) < (1-t)A(01) +1A(02).

The "monotonicity lemma" also implies convexity.

» Same results hold for discretized version F': R} - S™ c R™"™.
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Concave residuum funtion ONIVERSITAT
» F: R} —S™is monotonically non-increasing and convex:

c1<0p, = F(o))=F(02)
F((1-t)o1+t0y) < (1-1)F(01) +tF(02)

(for all 61,02 € R%, 1 €[0,1], S” c R™: symmetric matrices, ,<": Loewner order)

» Best data fitting: If o fulfills F (o) =Y then o minimizes

trace(Y-F(0)) >min! s.t. F(o)<Y.

» Residuum functional o ~ trace(Y — F (o)) is concave.
» Constraint set {c ¢ R’} : F(o) <Y} is convex.

Concave semi-definite minimization over a convex set.
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Globally convergent concave programming
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Globally convergent concave programming

Hoffman, Math. Program. 1981:

Mathematical Programming 20 (1981) 22-32.
North-Holland Publishing Company

A METHOD FOR GLOBALLY MINIMIZING
CONCAVE FUNCTIONS OVER CONVEX SETS

Karla Leigh HOFFMAN
The National Bureau of Standards, Washington, DC, U.S.A.

Received 1 February 1978
Revised manuscript received 17 April 1980

A method is described for globally minimizing concave functions over convex sets whose
defining constraints may be nonlinear. The algorithm generates linear programs whose

» Min.s of concave functionals on polyhedra attained in corner.
» For convex sets (compact & generated by finitely many convex inequalities).

(a) Find polyhedron that containts the constraint set.
(b) Project best polyhedra corner to constraint set
(c) Cut out tangential hyperplane in projection point. Repeat (b).
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Example (from BSc thesis of N. Lexow) DNIVERSITAT
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Global convergence result

Hoffman, Math. Program. 1981:
Sequence of best corners converges to global(!) minimizer.

Challenges for our problem
trace(Y -F(o)) »min! s.t. F(o)<Y.
» Result of Hoffman requires compact constraint set.
~ Add a-priori bounds {0 € [a,b]": F(c)<Y}.

» Hoffman’s constraint set defined by finitely many inequalities.

» Loewner-order encodes infinitely many scalar inequalities:
VI(Y =F(6))v20VveR™

~ Convergence result must be extended (seems possible).
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Preliminary numerical result DNIVERSIAY

Globally convergent concave minimization for EIT requires:
» cutting out planes & calculating new corners
» PDE solution for each functional evaluation

(Very preliminary) numerical experiments suggest:

» Gilobal convergence for EIT feasible for low resolutions
(e.g. 3 x3-image in less than one hour on standard PC).

Optimization Result

Global convergence possible for moderately low no. of unknowns.
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Autoencoder for low-dim. parametrization
(while preserving concavity!)
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Not every image is a lung image

Seo/Kim/Jargal/Lee/H. SIIMS 2019:

SIAM J. IMAGING Scieices © 2019 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 1275-1295

A Learning-Based Method for Solving Ill-Posed Nonlinear Inverse Problems: A
Simulation Study of Lung EIT*

Jin Keun Seof, Kang Cheol Kimf, Ariungerel Jargalf, Kyounghun Leef, and
Bastian Harrach?

Abstract. This paper proposes a new approach for solving ill-posed nonlinear inve

 problems. For ease of
ipedance tomoy
tonlinear and ill-posed inverse problem. Conventionally, p
s have been used to deal with the ill-posed problem. Howe £
ences over the last three decades have shown methodological limitations in utilizing prior knowledge
about tracking expected imaging features for medical diagnosis. The proposed method’s paradigm
is completely different from conventional approaches; the proposed reconstruction uses a variety of
training data sets to generate a low dimensional manifold of approximate solutions, which allows
conversion of the ill-posed problem to a well-posed one. Variational autoencoder was used to produce
a compact and dense representation for lung EIT images with a low dimensional latent space. Then,
we learn a robust connection between the EIT data and the low dimensional latent data. Numerical
simulations validate the effectiveness and feasibility of the proposed approach.

. which is known to be a
based regularization meth

» Lung images depend on low number of latent parameters.
» Variational autoencoder finds 16 dim. latent parametrization.
> Inverse problem much more robust to solve on latent space.
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Autoencoder for low-dimensional parametrization ONIERSITAT

Idea: Train neural networks @ and ¥ so that

Yod~id on training set of lung images.

» &: R" - R? encodes n-pixel images with d latent parameters,
» ¥: R? - R" decodes n-pixel images from d latent parameters.

Inverse Problem: To solve F (o) =Y for lung image o:

Solve (FoW)(p)=Y forpeR? then¥(p)=0ccR"

Advantages:
> Less unknowns d << n, inverse problem more robust.
» o =¥(p) lies in range of ¥ (i.e., the set of lung images).
» Data-driven encoding separated from mathematical inversion.
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Best data fitting on low-dimensional latent space

Inverse Problem: To solve F(o) =Y for lung image o:

Solve (FoW)(p)=Y forpeR? thenW¥(p)=0ccR"

Best data fitting: If p fulfills F(¥(p))) =Y then p minimizes

trace(Y - F(¥(p))) > min! s.t. F(¥(p))<Y.

» This is a concave minimization problem on convex set
if Foy: RP - S™ convex (w.r.t. Loewner order).
» Since F: R" - S™ convex & non-increasing:
Foy: R? - §"is convex if y: R? - R" is concave.
~ We need low-dim. autoencoder with concave decoder part.

B. Harrach: Autoencoder-based global concave optimization for Electrical Impedance Tomography



GOETHE @

Enforcing convexity/concavity of neural network ONIERSITAT

Decoder part W of neural network autoencoder:
» Concatenation of linear functions & activator functions.
» Convex if all parts are convex & non-decrasing.

Simple idea to enforce concavity of W:
» Use convex non-decr. activator functions (e.g., ReLU/Softplus).
» Train NN with non-negativity constraint on all matrices.
» Train with negated images (+ shift), so that - is convex.

Best data fitting: If p € R fulfills F(¥(p))) =Y then p minimizes
trace(Y -F(¥(p))) > min! s.t. F(¥(p))<Y.

Concave min. on convex set in moderately low-dim. latent space.
(Bounds on constraint set in latent space can also be obtained.)
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Numerical example ONIERSITAT

Iteration 60/60

» 2D unit square, 32 electr. (shunt model), 1 grounded, m =31
» p=9 latent variables for 16 x 16-"lung"-images (n = 256)
» Many iterations needed, runtime of several hours ("overnight")
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Many open questions

Bottlenecks in our global concave minimization
» Calculating polygon corners from defining inequalites
» Cost function evaluations on each corner (i.e., PDE solutions)
» Better algorithms? DC programming?

Autoencoders with concave encoder
» What image sets can be "well approxmiated"?
» Universal approximation? Conservation of difficulty?
» Bounds in latent space? Ensuring positive conductivities?

Application in EIT
> lll-posedness? Regularization? Error estimates?

Related question: Learning forward operator
» How to ensure the right mathematical properties?
» For EIT: Monotonicity & convexity w.r.t. Loewner order?
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For elliptic coefficient inverse problems
» least-squares residuum functionals may be highly non-convex
> local min. are usually useless, global conv. seems out of reach

Convex best data fitting reformulations
» are possible but some parts still unknown (H. SIMA 2023)

Concave best data fitting reformulations
> are easy to derive, all parts known
» allow global convergence in moderately low dimensions

Neural network autoencoder techniques
» parametrize images with low number of latent parameters
» can be trained preserving concavity

Global convergence for images allowing low.-dim. parametrization.
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