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Motivation: 1D inverse problems

▸ Given ŷ ∈R, a < b, consider 1D inverse problem:

Determine x̂ ∈ [a,b] from f (x̂) = ŷ,

with given ŷ ∈R, a < b, and f ∶ [a,b] →R continuous.

▸ If f is strictly monotonically increasing:

Inverse problem uniquely solvable ⇐⇒ f (a) ≤ ŷ ≤ f (b).
↝ Easy-to-check criterion, requires only 2 function evals.

▸ If, additionally, f is convex

Newton-Method converges for any x(0) ≥ x̂.

↝ Global Newton-convergence for x(0) ∶= b.

Monotonicity & convexity greatly helps in inverse problems.
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Motivation: Calderón problem / EIT

NtD Λ ∶ L∞+ (Ω) →L(L2
◇(∂Ω) fulfills ∀σ1,σ2 ∈ L∞+ (Ω), g ∈ L2

◇(∂Ω):

∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds ≥ ∫
Ω

(σ2−σ1)∣∇ug
σ2 ∣

2 dx

= ∫
∂Ω

gΛ
′(σ2)(σ1−σ2)g ds.

↝ Monotonicity: σ1 ≤ σ2 Ô⇒ Λ(σ1) ⪰Λ(σ2)
↝ Convexity: Λ(σ1)−Λ(σ2) ⪰Λ

′(σ2)(σ1−σ2)
w.r.t. Loewner order

A ⪰ B ∶⇐⇒ B−A positive semidefinite.

This talk: Utilizing monotonicity & convexity for Robin problem
(similar but simpler than Calderón problem/EIT)
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An inverse Robin coefficient problem

(with applications in corrosion detection)
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Electrical Impedance Tomography for corrosion detection

Cement pillar

Rebar corrosion

Electrodes

Non-destructive EIT-based corrosion detection:
▸ Apply electric currents on outer boundary ∂Ω

▸ Measure necessary voltages

↝ Detect corrosion on inner boundary Γ = ∂D
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Idealized mathematical model: Robin PDE

Electric potential u ∶ Ω→R solves

∆u = 0 in Ω∖Γ,

∂νu∣∂Ω = g on ∂Ω,

JuKΓ = 0 on Γ,

J∂νuKΓ = γu on Γ
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▸ Applied boundary currents: g ∶ ∂Ω→R
▸ Corrosion coefficient: γ ∶ Γ→R
▸ Voltage jump: JuK ∶= u+∣Γ−u−∣Γ
▸ Lack of electrical currents: J∂νuK ∶= ∂νu+∣Γ−∂νu−∣Γ
▸ Measured boundary voltages: u∣∂Ω ∶ ∂Ω→R
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Forward and inverse problem

▸ Forward problem:
Given corrosion γ ∈ L∞+ (Γ) and applied currents g ∈ L2(∂Ω),
predict/simulate voltage measurements u(g)γ ∣∂Ω ∈ L2(∂Ω).
(Existence & Uniqueness follow from standard Lax-Milgram argument)

▸ Inverse problem:

Given voltages u(g)γ ∣∂Ω ∈ L2(∂Ω) for several g ∈ L2(∂Ω),
reconstruct corrosion coefficient γ ∈ L∞+ (Γ).

Can we recover coefficient γ ∈ L∞+ (Γ) in Robin PDE
from Dirichlet and Neumann boundary values (∂νu∣∂Ω,u∣∂Ω)?
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Global uniqueness from idealized data

Theorem. (H./Meftahi, SIAM J. Appl. Math. 2019)

γ ∈ L∞+ (Γ) is uniquely determined by Neumann-Dirichlet-Operator

Λ(γ) ∶ L2(∂Ω) → L2(∂Ω), g↦ u(g)γ ∣∂Ω,

where u(g)γ solves Robin PDE (1)–(4).

↝ Infinitely many measurements with infinite accuracy
uniquely determine γ ∈ L∞+ (Γ) with infinite resolution.

Consequences for practical applications?
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Engineer vs. Mathematician

▸ Engineer:
I want to determine some parameters from my measurements.

▸ Mathematician:
Okay, I can solve the problem in infinite-dimensional spaces.

▸ Engineer:
Why? Is my finite-dimensional problem too trivial for you? I
need finite resolution from finitely many noisy measurements.

▸ Mathematician:
No, your finite-dimensional problem is too hard for me.
I can only solve the idealized infinite-dimensional version.
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Towards practical applications

▸ Finitely many measurements:

∫
∂Ω

g jΛ(γ)g j ds for finitely many g j, j = 1, . . . ,m

(power required to keep up current g j , electrode models yield similar expressions)

▸ Finite desired resolution:

γ =
n

∑
j=1

γ jχΓ j with γ j ∈R, j = 1, . . . ,n

with partition Γ = ⋃n
j=1 Γ j

▸ A-priori bounds: γ ∶= (γ1, . . . ,γn)T ∈ [a,b]n with known b > a > 0.
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Towards practical applications

Finite-dimensional non-linear inverse problem: Determine

γ = (γ j)nj=1 ∈ [a,b]n from F(γ) ∶= (∫
∂Ω

g jΛ(γ)g j ds)
m

j=1
∈Rm

▸ Uniqueness: How many (and what) g j make F injective?
▸ Stability/error estimates?
▸ How to determine γ from F(γ)? Convergence (local/global)?

Problem is much harder than the infinite-dimensional version!
But (for this simple Robin example): it can be solved.
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Example result

Four unknown conductivities γ1, . . . ,γ4 with a-priori bounds 1 ≤ γ j ≤ 2
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setting g1 g2 g3 g4

For F(γ) ∶= (∫∂Ω
g jΛ(γ)g j ds)4j=1 with these g1,. . . , g4 we can prove

(H., Numer. Math. 2020)
▸ F(γ) uniquely determines γ ∈ [1,2]4

▸ ∥γ − γ
′∥∞ ≤ 7.5

∥F(γ)−F(γ ′)∥∞
∥F(2)−F(1)∥∞

for all γ,γ ′ ∈ [1,2]4

▸ Newton iteration with γ
(0) = (1,1,1,1) (globally!) converges.
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Noisy measurements
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Using F(γ) ∶= (∫∂Ω
g jΛ(γ)g j ds)4j=1 with g1,. . . ,g4 as on last slide:

▸ Newton convergence speed is quadratic

▸ For all yδ ∈ [F(2),F(1)]4 there exists unique γ with F(γ) = yδ

↝ Lipschitz stability yields error estimate.
↝ Newton finds pcw.-const. approx. if true γ is not pcw.-const.

Rest of talk: How to construct g1, . . . ,g4 and prove such results.
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Uniqueness, stability
and global Newton convergence

(for pointwise convex monotonic functions)
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Pointwise convex, monotonic C1 functions

Given F ∶ U ⊆Rn→Rm, m ≥ n ≥ 2, on convex open set U ⊆Rn.

F pointwise monotonic ⇐⇒ F ′(x) ≥ 0 ∀x ∈U,

F pointwise convex ⇐⇒ F(y)−F(x) ≥ F ′(x)(y−x) ∀x,y ∈U.

Goal: Find criteria that ensure
▸ Injectivity of F
▸ Lipschitz continuity of F−1

▸ Global convergence of Newton’s method for n =m

Results known for inverse monotonic convex F , i.e. F ′(x)−1 ≥ 0.

We need results for forward monotonic convex F , i.e. F ′(x) ≥ 0.
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Simple version of the main result

Theorem. (H., Numer. Math. 2020)

F ∶ U ⊆Rn→Rm, F ∈C1, pointwise convex and monotonic. If

U ⊃ [−1,3]n and F ′(−e j +3e′j)(e j −3e′j) /≤ 0 ∀ j = 1, . . . ,n,

then F is injective on [0,1]n.

e j ∶= (0 . . . 0 1 0 . . . 0)T ∈Rn unit vector, e′j ∶= 1−e j = (1 . . . 1 0 1 . . . 1)T ∈Rn

▸ Easy and simple-to-check criterion for injectivity

▸ Also yields injectivity of F ′(x) & Lipschitz continuity of F−1 with

L = 2( min
j=1,...,n

max
k=1,...,m

eT
k F ′(−e j +3e′j)(e j −3e′j))

−1
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Sketch of proof (1/2)

Theorem. (H., Numer. Math. 2020)

F ∶ U ⊆Rn→Rm, F ∈C1, pointwise convex and monotonic. If

U ⊃ [−1,3]n and F ′(−e j +3e′j)(e j −3e′j) /≤ 0 ∀ j = 1, . . . ,n,

then F is injective on [0,1]n.

Proof (1/2). Auxiliary result: For all x ∈ [0,1]n,

e j −3e′j ≤ x−(−e j +3e′j) ≤ 2e j −2e′j

and thus

2F ′(x)(e j −e′j) ≥ F ′(x)(x−(−e j +3e′j)) ≥ F(x)−F(−e j +3e′j)
≥ F ′(−e j +3e′j)(x−(−e j +3e′j))
≥ F ′(−e j +3e′j)(e j −3e′j) /≤ 0 Ô⇒ F ′(x)(e j −e′j) /≤ 0.
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Sketch of proof (2/2)

Theorem. (H., Numer. Math. 2020)

F ∶ U ⊆Rn→Rm, F ∈C1, pointwise convex and monotonic. If

U ⊃ [−1,3]n and F ′(−e j +3e′j)(e j −3e′j) /≤ 0 ∀ j = 1, . . . ,n,

then F is injective on [0,1]n.

Proof (2/2). Auxiliary result: ∀x ∈ [0,1]n: F ′(x)(e j −e′j) /≤ 0.

Proof of injectivity: Let x,y ∈ [0,1]n, x ≠ y. Then ∃ j ∈ {1, . . . ,n}:
y−x
∥y−x∥∞

≥ e j −e′j or
x−y
∥y−x∥∞

≥ e j −e′j

In the first case

F(y)−F(x) ≥ F ′(x)(y−x) ≥ ∥y−x∥∞F ′(x)(e j −e′j) /≤ 0.

↝ F(y) ≠ F(x). Second case analogously. ◻
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Global Newton convergence

Theorem. (H., Numer. Math. 2020)

F ∶ U ⊆Rn→Rn, F ∈C1, pointwise convex and monotonic. If

[−2,n(n+3)]n ⊂U and F ′(z( j))d( j) /≤ 0 for all j ∈ {1, . . . ,n},

with z( j) ∶= −2e j +n(n+3)e′j, and d( j) ∶= e j −(n2+3n+1)e′j, then

▸ F is injective on [−1,n]n, F ′(x) is invertible for all x ∈ [−1,n]n.

▸ If, additionally, F(0) ≤ 0 ≤ F(1), then there exists a unique

x̂ ∈ (− 1
n−1 ,1+

1
n−1)

n
with F(x̂) = 0,

The Newton iteration started with x(0) ∶= 1 converges against x̂.
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Proof and Comments

Proof.
▸ F injective and F ′(x) invertible: similar to sample result.
▸ Global Newton convergence:

F ′(z( j))d( j) /≤ 0Ô⇒ F is affine transf. of inverse monotonic
(Collatz monotone) convex function, for which global Newton
convergence is classic result.

Comments/Extensions
▸ Result allows to calculate Lipschitz constant of F−1.
▸ Result can be formulated with arbitrarily small neighborhoods

U ⊃ [0,1]n with criteria

F ′(z( j,k))d( j) /≤ 0 ∀ j ∈ {1, . . . ,n}, k ∈ {1, . . . ,K}.
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Back to the Robin interface problem

▸ Monotonicity relations (Kang/Seo/Sheen 97, Ikehata 98, H./Ullrich 13)

F(γ) ∶= (∫
∂Ω

g jΛ(γ)g j ds)
m

j=1
∈Rm

is pointw. convex and monot. decreasing for any choice of g j.

▸ F ∈C1, directional derivatives fulfill, e.g.

F ′(γ)(−e j +3e′j) = (∫
Γ j

∣ugk
γ ∣2 ds−3∫

Γ∖Γ j

∣ugk
γ ∣2 ds)

n

k=1
∈Rn

↝ F ′(z( j))d( j) /≤ 0 if ug j

z( j) has high energy on Γ j and low on Γ∖Γ j.
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Back to the Robin interface problem

↝ F ′(z( j))d( j) /≤ 0 if ug j

z( j) has high energy on Γ j and low on Γ∖Γ j.

▸ Localized potentials (H. 08): g j can be chosen so that

F ′(z( j))d( j) /≤ 0 ∀ j

▸ Simultaneously localized potentials: g j can be chosen so that

F ′(z( j,k))d( j) /≤ 0 ∀ j,k

(H./Lin 20, important for treating γ ∈ [a,b]n with arbitrary b > a > 0)

▸ "g j can be chosen": every large enough fin.-dim. subspace of
L2(∂Ω) contains such g j & explicit method to calculate them.
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Back to the Robin interface problem

For the example result with four unknown conductivities γ ∈ [1,2]4
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▸ ug j
γ has localized energy on Γ j for certain γ

(More precisely: for K = 173 choices of γ)
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Conclusions and Outlook (1/2)

For fin.-dim. inverse problems with convex monotonic functions
▸ simple criterion ensures uniqueness and Lipschitz stability
▸ also yields global Newton convergence
▸ criterion requires to check finitely many directional derivatives

For a discretized inverse Robin coefficient problem
▸ assumptions connected to monotonicity & localized potentials
▸ boundary currents can be found that uniquely and stably

determine conductivity with global Newton convergence

Extension: Reformulate problem as convex semidefinite program
▸ Robin Problem: H., Optim. Lett., 2022

▸ Calderón problem: H., SIMA, 2023
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Conclusions and Outlook (2/2)

▸ Provocative claim:

Finite-dimensional inverse coefficients problem are much
harder than infinite-dimensional ones.

▸ Relation to classical Collatz theory:

Elliptic PDE forward problems lead to inverse monotonic
convex functions. Inverse elliptic coefficient problems lead to

forward monotonic convex functions.
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