

Monotonicity and Convexity in inverse coefficient problems

Bastian Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

The 14th AIMS Conference at NYU Abu Dhabi Abu Dhabi, UAE, December 16–20, 2024.

Motivation: 1D inverse problems

▶ Given $\hat{y} \in \mathbb{R}$, a < b, consider 1D inverse problem:

Determine
$$\hat{x} \in [a,b]$$
 from $f(\hat{x}) = \hat{y}$, with given $\hat{y} \in \mathbb{R}$, $a < b$, and $f : [a,b] \to \mathbb{R}$ continuous.

▶ If *f* is strictly monotonically increasing:

Inverse problem uniquely solvable \iff $f(a) \le \hat{y} \le f(b)$.

- → Easy-to-check criterion, requires only 2 function evals.
- If, additionally, f is convex

Newton-Method converges for any $x^{(0)} \ge \hat{x}$.

 \rightarrow Global Newton-convergence for $x^{(0)} := b$.

Monotonicity & convexity greatly helps in inverse problems.

Motivation: Calderón problem / EIT

NtD
$$\Lambda: L^{\infty}_{+}(\Omega) \to \mathcal{L}(L^{2}_{\diamond}(\partial\Omega))$$
 fulfills $\forall \sigma_{1}, \sigma_{2} \in L^{\infty}_{+}(\Omega), g \in L^{2}_{\diamond}(\partial\Omega)$:

$$\int_{\partial\Omega} g(\Lambda(\sigma_1) - \Lambda(\sigma_2)) g \, ds \ge \int_{\Omega} (\sigma_2 - \sigma_1) |\nabla u_{\sigma_2}^g|^2 \, dx$$

$$= \int_{\partial\Omega} g \Lambda'(\sigma_2) (\sigma_1 - \sigma_2) g \, ds.$$

$$\rightarrow$$
 Monotonicity: $\sigma_1 \le \sigma_2 \implies \Lambda(\sigma_1) \ge \Lambda(\sigma_2)$

$$\ \, \hbox{\sim Convexity:} \quad \Lambda(\sigma_1)-\Lambda(\sigma_2) \geq \Lambda'(\sigma_2)(\sigma_1-\sigma_2)$$

w.r.t. Loewner order

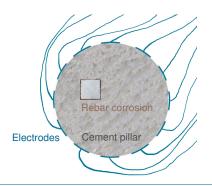
$$A \ge B$$
 : \iff $B - A$ positive semidefinite.

This talk: Utilizing monotonicity & convexity for Robin problem (similar but simpler than Calderón problem/EIT)

An inverse Robin coefficient problem

(with applications in corrosion detection)

Electrical Impedance Tomography for corrosion detection



Non-destructive EIT-based corrosion detection:

- Apply electric currents on outer boundary $\partial \Omega$
- Measure necessary voltages
- \rightarrow Detect corrosion on inner boundary $\Gamma = \partial D$

Idealized mathematical model: Robin PDE

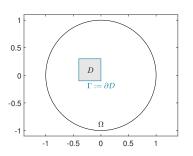
Electric potential $u: \Omega \to \mathbb{R}$ solves

$$\Delta u = 0 \qquad \text{in } \Omega \setminus \Gamma,$$

$$\partial_{\nu} u|_{\partial\Omega} = g \qquad \text{on } \partial\Omega,$$

$$[\![u]\!]_{\Gamma} = 0 \qquad \text{on } \Gamma,$$

$$[\![\partial_{\nu} u]\!]_{\Gamma} = \gamma u \qquad \text{on } \Gamma$$



- ▶ Applied boundary currents: $g: \partial \Omega \to \mathbb{R}$
- ► Corrosion coefficient: $\gamma: \Gamma \to \mathbb{R}$
- ▶ *Voltage jump:* $[\![u]\!] := u^+|_{\Gamma} u^-|_{\Gamma}$
- ► Lack of electrical currents: $[\![\partial_{\nu}u]\!] := \partial_{\nu}u^+|_{\Gamma} \partial_{\nu}u^-|_{\Gamma}$
- Measured boundary voltages: $u|_{\partial\Omega}: \partial\Omega \to \mathbb{R}$

Global uniqueness from idealized data

Theorem. (H./Meftahi, SIAM J. Appl. Math. 2019)

 $\gamma \in L^{\infty}_{\perp}(\Gamma)$ is uniquely determined by *Neumann-Dirichlet-Operator*

$$\Lambda(\gamma)\colon L^2(\partial\Omega)\to L^2(\partial\Omega),\quad g\mapsto u_\gamma^{(g)}|_{\partial\Omega},$$

where $u_{\gamma}^{(g)}$ solves Robin PDE (1)–(4).

Infinitely many measurements with infinite accuracy uniquely determine $\gamma \in L^{\infty}_{+}(\Gamma)$ with infinite resolution.

Consequences for practical applications?

Towards practical applications

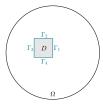
Finitely many measurements:

$$\int_{\partial\Omega} g_j \Lambda(\gamma) g_j \, ds \quad \text{ for finitely many } g_j, \ j = 1, \dots, m$$

(power required to keep up current g_j , electrode models yield similar expressions)

Finite desired resolution:

$$\gamma = \sum_{j=1}^{n} \gamma_j \chi_{\Gamma_j}$$
 with $\gamma_j \in \mathbb{R}$, $j = 1, ..., n$



with partition $\Gamma = \bigcup_{j=1}^{n} \Gamma_j$

• A-priori bounds: $\gamma := (\gamma_1, \dots, \gamma_n)^T \in [a, b]^n$ with known b > a > 0.

Towards practical applications

Finite-dimensional non-linear inverse problem: Determine

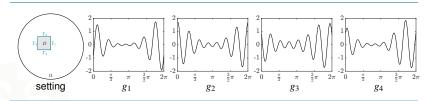
$$\gamma = (\gamma_j)_{j=1}^n \in [a,b]^n$$
 from $F(\gamma) := \left(\int_{\partial \Omega} g_j \Lambda(\gamma) g_j \, \mathrm{d}s \right)_{j=1}^m \in \mathbb{R}^m$

- Uniqueness: How many (and what) g_i make F injective?
- Stability/error estimates?
- How to determine γ from $F(\gamma)$? Convergence (local/global)?

Problem is much harder than the infinite-dimensional version! But (for this simple Robin example): it can be solved.

Example result

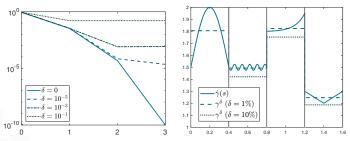
Four unknown conductivities $\gamma_1, \dots, \gamma_4$ with a-priori bounds $1 \le \gamma_j \le 2$



For $F(\gamma) := \left(\int_{\partial \Omega} g_j \Lambda(\gamma) g_j \, ds \right)_{j=1}^4$ with these g_1, \dots, g_4 we can prove (H., Numer, Math. 2020)

- ► $F(\gamma)$ uniquely determines $\gamma \in [1,2]^4$
- $\|\gamma \gamma'\|_{\infty} \le 7.5 \frac{\|F(\gamma) F(\gamma')\|_{\infty}}{\|F(2) F(1)\|_{\infty}} \quad \text{for all } \gamma, \gamma' \in [1, 2]^4$
- Newton iteration with $\gamma^{(0)} = (1, 1, 1, 1)$ (globally!) converges.

Noisy measurements



Using $F(\gamma) \coloneqq \left(\int_{\partial \Omega} g_j \Lambda(\gamma) g_j \, ds \right)_{j=1}^4$ with g_1, \dots, g_4 as on last slide:

- Newton convergence speed is quadratic
- For all $y^{\delta} \in [F(2), F(1)]^4$ there exists unique γ with $F(\gamma) = y^{\delta}$
 - Lipschitz stability yields error estimate.
 - \rightarrow Newton finds pcw.-const. approx. if true γ is not pcw.-const.

Rest of talk: How to construct g_1, \dots, g_4 and prove such results.

Uniqueness, stability and global Newton convergence

(for pointwise convex monotonic functions)

Pointwise convex, monotonic C^1 functions

Given $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $m \ge n \ge 2$, on convex open set $U \subseteq \mathbb{R}^n$.

$$F$$
 pointwise monotonic $\iff F'(x) \ge 0 \quad \forall x \in U,$
 F pointwise convex $\iff F(y) - F(x) \ge F'(x)(y-x) \quad \forall x,y \in U.$

Goal: Find criteria that ensure

- Injectivity of F
- ▶ Lipschitz continuity of F⁻¹
- ▶ Global convergence of Newton's method for n = m

Results known for **inverse** monotonic convex F, i.e. $F'(x)^{-1} \ge 0$. We need results for **forward** monotonic convex F, i.e. $F'(x) \ge 0$.

Simple version of the main result

Theorem. (H., Numer. Math. 2020)

 $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $F \in C^1$, pointwise convex and monotonic. If

$$U \supset [-1,3]^n$$
 and $F'(-e_j + 3e'_j)(e_j - 3e'_j) \nleq 0 \ \forall j = 1,...,n,$

then F is injective on $[0,1]^n$.

$$e_j := (0 \dots 0 \ 1 \ 0 \dots 0)^T \in \mathbb{R}^n$$
 unit vector, $e_j' := 1 - e_j = (1 \dots 1 \ 0 \ 1 \dots 1)^T \in \mathbb{R}^n$

- Easy and simple-to-check criterion for injectivity
- Also yields injectivity of F'(x) & Lipschitz continuity of F^{-1} with

$$L = 2 \left(\min_{j=1,\dots,n} \max_{k=1,\dots,m} e_k^T F'(-e_j + 3e_j') \left(e_j - 3e_j' \right) \right)^{-1}$$

Global Newton convergence

Theorem. (H., Numer. Math. 2020)

 $F: U \subseteq \mathbb{R}^n \to \mathbb{R}^n, F \in C^1$, pointwise convex and monotonic. If

$$[-2, n(n+3)]^n \subset U$$
 and $F'(z^{(j)})d^{(j)} \nleq 0$ for all $j \in \{1, \dots, n\}$,

with
$$z^{(j)} \coloneqq -2e_j + n(n+3)e'_j$$
, and $d^{(j)} \coloneqq e_j - (n^2 + 3n + 1)e'_j$, then

- ► *F* is injective on $[-1,n]^n$, F'(x) is invertible for all $x \in [-1,n]^n$.
- ▶ If, additionally, $F(0) \le 0 \le F(1)$, then there exists a unique

$$\hat{x} \in \left(-\frac{1}{n-1}, 1 + \frac{1}{n-1}\right)^n$$
 with $F(\hat{x}) = 0$,

The Newton iteration started with $x^{(0)} := 1$ converges against \hat{x} .

Back to the Robin interface problem

Monotonicity relations (Kang/Seo/Sheen 97, Ikehata 98, H./Ullrich 13)

$$F(\gamma) := \left(\int_{\partial \Omega} g_j \Lambda(\gamma) g_j \, \mathrm{d}s \right)_{j=1}^m \in \mathbb{R}^m$$

is pointw. convex and monot. decreasing for any choice of g_i.

• $F \in \mathbb{C}^1$, directional derivatives fulfill, e.g.

$$F'(\gamma)(-e_j+3e_j') = \left(\int_{\Gamma_j} |u_{\gamma}^{g_k}|^2 ds - 3 \int_{\Gamma \setminus \Gamma_j} |u_{\gamma}^{g_k}|^2 ds\right)_{k=1}^n \in \mathbb{R}^n$$

 $\sim F'(z^{(j)})d^{(j)} \nleq 0$ if $u_{z(i)}^{g_j}$ has high energy on Γ_i and low on $\Gamma \setminus \Gamma_i$.

Back to the Robin interface problem

$ightarrow F'(z^{(j)})d^{(j)} \nleq 0$ if $u_{z^{(j)}}^{g_j}$ has high energy on Γ_j and low on $\Gamma \smallsetminus \Gamma_j$.

Localized potentials (H. 08): g_j can be chosen so that

$$F'(z^{(j)})d^{(j)} \nleq 0 \quad \forall j$$

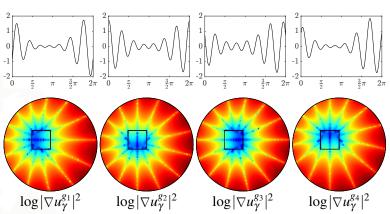
ightharpoonup Simultaneously localized potentials: g_j can be chosen so that

$$F'(z^{(j,k)})d^{(j)} \nleq 0 \quad \forall j,k$$

(**H.**/Lin 20, important for treating $\gamma \in [a,b]^n$ with arbitrary b > a > 0)

• " g_j can be chosen": every large enough fin.-dim. subspace of $L^2(\partial\Omega)$ contains such g_j & explicit method to calculate them.

For the example result with four unknown conductivities $\gamma \in [1,2]^4$



• $u_{\gamma}^{g_j}$ has localized energy on Γ_j for certain γ (More precisely: for K = 173 choices of γ)

Conclusions and Outlook (1/2)

For fin.-dim. inverse problems with convex monotonic functions

- simple criterion ensures uniqueness and Lipschitz stability
- also yields global Newton convergence
- criterion requires to check finitely many directional derivatives

For a discretized inverse Robin coefficient problem

- assumptions connected to monotonicity & localized potentials
- boundary currents can be found that uniquely and stably determine conductivity with global Newton convergence

Extension: Reformulate problem as convex semidefinite program

- ▶ Robin Problem: H., Optim. Lett., 2022
- Calderón problem: H., SIMA, 2023

Conclusions and Outlook (2/2)

Provocative claim:

Finite-dimensional inverse coefficients problem are much harder than infinite-dimensional ones.

Relation to classical Collatz theory:

Elliptic PDE forward problems lead to inverse monotonic convex functions. Inverse elliptic coefficient problems lead to forward monotonic convex functions.