

Uniqueness and convex reformulation for inverse coefficient problems with finitely many measurements

Bastian Harrach

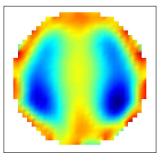
http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

Inverse Problems Seminar UC Irvine, CA, USA, April 7, 2022.

EIT with finitely many measurements

Electrical impedance tomography (EIT)



- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla u) = 0, \quad x \in \Omega \subset \mathbb{R}^d$$
 (1)

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2_{\diamond}(\partial\Omega) \to L^2_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial \Omega} = g$.

Challenges in idealized EIT

Mathematical idealization of EIT → Calderón problem

- infinitely many unknowns $\sigma \in L^{\infty}_{+}(\Omega)$
- ▶ infinitely many measurements $\Lambda(\sigma) \in \mathcal{L}(L^2_\diamond(\partial\Omega))$
- ▶ nonlinear forward map $\sigma \mapsto \Lambda(\sigma)$

Mathematical challenges

- ▶ Uniqueness? Does $\Lambda(\sigma)$ determine σ ?
- ► Stability? Λ^{-1} : $\Lambda(\sigma) \mapsto \sigma$ continuous?
- Convergence (local/global)? How to determine σ from $\Lambda(\sigma)$?

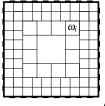
Consequences for practical EIT?

EIT in practice

- Finitely many unknowns, σ pcw. const. on given resolution $\Omega = \bigcup_{i=1}^{n} \omega_i$
- Finitely many measurements

$$\int_{\partial\Omega}g_j\Lambda(\sigma)g_k\,\mathrm{d}s$$

for given currents $g_1, \ldots, g_m \in L^2_{\diamond}(\partial\Omega)$



Ω

Finite-dimensional inverse problem: Determine

$$\sigma = \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_n \end{pmatrix} \in \mathbb{R}^n_+ \quad \text{from } F(\sigma) = \left(\int_{\partial \Omega} g_j \Lambda(\sigma) g_k \, ds \right)_{j,k=1}^m \in \mathbb{R}^{m \times m}.$$

Mathematical challenges for practical EIT

Inverse problem: Determine $\sigma \in \mathbb{R}^n_+$ from $Y = F(\sigma) \in \mathbb{R}^{m \times m}$.

For a fixed desired resolution:

- How many measurements uniquely determine σ ?
- ► Stability / error estimates for noisy data $Y^{\delta} \approx F(\sigma)$?
- Numerical algorithm to determine $\sigma \in \mathbb{R}^n_+$ from $Y^\delta \approx F(\sigma)$?
- Global/local convergence of algorithm?

This talk: The problem of local convergence, a bold guess, and answers for a Robin problem (similar to but simpler than EIT)

The problem of local minima and a bold guess

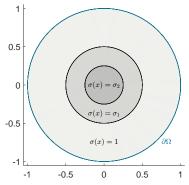
Simple example: EIT with 2 unknowns & 6 bndry. currents

Ω : unit circle

$$\begin{split} F: & \mathbb{R}_+^2 \to \mathbb{R}^{6 \times 6} \\ & F\begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix} \coloneqq \left(\int_{\partial \Omega} g_j \Lambda(\sigma) g_k \right)_{j,k=1}^6 \end{split}$$

with trigonometric currents

$$\{g_1,\ldots,g_6\}=\{\sin(\varphi),\ldots,\cos(3\varphi)\}$$

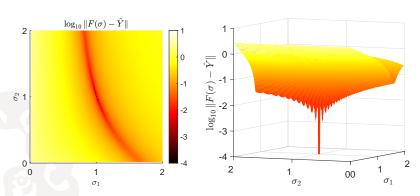


Inverse problem: Reconstruct $\hat{\sigma} \in \mathbb{R}^2_+$ from $\hat{Y} = F(\hat{\sigma}) \in \mathbb{R}^{6 \times 6}$

Natural approach: Least squares data fitting

minimize
$$||F(\sigma) - \hat{Y}||_{\mathsf{F}}^2$$
 (+ Regularization)

Problem of local minima



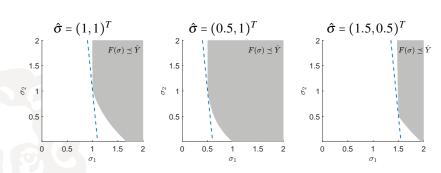
Numerical results indicate

- $\hat{Y} = F(\hat{\sigma})$ uniquely determines $\hat{\sigma}$...
- ...but residuum is highly non-convex, many local minima

Are globally convergent algorithms impossible?

Bold guess

Inverse problem: Reconstruct $\hat{\sigma} \in \mathbb{R}^2_+$ from $\hat{Y} = F(\hat{\sigma}) \in \mathbb{R}^{6 \times 6}$



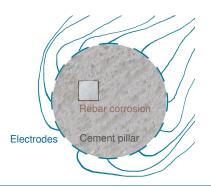
Bold conjecture.

 $\hat{\sigma}$ is the lower left corner of the convex set $F(\sigma) \leq \hat{Y}$.

("≤": Loewner / semidefiniteness order)

An inverse Robin coefficient problem

EIT for corrosion detection



Non-destructive EIT-based corrosion detection:

- Apply electric currents on outer boundary $\partial \Omega$
- Measure necessary voltages
- \rightarrow Detect corrosion on inner boundary $\Gamma = \partial D$

Idealized mathematical model: Robin PDE

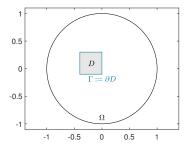
Electric potential $u: \Omega \to \mathbb{R}$ solves

(1)
$$\Delta u = 0$$
 in $\Omega \setminus \Gamma$,

(2)
$$\partial_{\nu} u|_{\partial\Omega} = g$$
 on $\partial\Omega$,

(3)
$$[u]_{\Gamma} = 0$$
 on Γ ,

(4)
$$[\![\partial_v u]\!]_{\Gamma} = \sigma u$$
 on Γ



Inverse Problem: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2(\partial\Omega) \to L^2(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where u solves Robin PDE (1)–(4).

Finitely many measurements and unknowns

▶ Finitely many measurements:

$$\int_{\partial\Omega} g_j \Lambda(\sigma) g_k \, ds \quad \text{ for finitely many } g_1, \dots, g_m$$

Finite desired resolution:

$$\sigma = \sum_{j=1}^{n} \sigma_{j} \chi_{\Gamma_{j}} \quad \text{with } \sigma_{j} \in \mathbb{R}, \ j = 1, \dots, n$$

 Γ_3 D Γ_1 Ω

with partition
$$\Gamma = \bigcup_{j=1}^{n} \Gamma_j$$

• A-priori bounds: $\sigma := (\sigma_1, \dots, \sigma_n)^T \in [a, b]^n, b > a > 0$ known

Finite-dimensional non-linear inverse problem: Determine

$$\boldsymbol{\sigma} = (\boldsymbol{\sigma}_j)_{j=1}^n \in [a,b]^n \quad \text{from} \quad F(\boldsymbol{\sigma}) \coloneqq \left(\int_{\partial \Omega} g_j \Lambda(\boldsymbol{\sigma}) g_k \, \mathrm{d}s \right)_{j,k=1}^m \in \mathbb{R}^{m \times m}$$

Main result 1/3

Theorem. (H., Optim. Lett. 2021)

If sufficiently many measurements are taken, then

- $\hat{Y} := F(\hat{\sigma}) \in \mathbb{R}^{m \times m}$ uniquely determines $\hat{\sigma} \in [a,b]^n$.
- $\hat{\sigma}$ is the unique solution of

minimize
$$\|\sigma\|_1 = \sum_{j=1}^n \sigma_j$$
 s.t. $\sigma \in [a,b]^n, F(\sigma) \leq \hat{Y}$.

▶ The constraint set $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$ is convex.

- \rightarrow $\hat{\sigma}$ is the lower left corner of the convex constraint set
- Problem can be solved by convex semidefinite programming

Global convergence is feasible.

(H., Numer. Math. 2020: Global Newton convergence for this Robin problem)

Theorem. (H., Optim. Lett. 2021)

- Suff. many measurements are taken if $\lambda_{\max}(F'(z_{j,k})d_j) > 0$ for $z_{j,k} \coloneqq \frac{a}{2}e'_j + \left(a + k\frac{a}{4(n-1)}\right)e_j \in \mathbb{R}^n, \quad d_j \coloneqq \frac{2b-a}{a}(n-1)e'_j \frac{1}{2}e_j \in \mathbb{R}^n,$ with $j=1,\ldots,n, \quad k=1,\ldots, \left\lceil \frac{4(n-1)b}{a} \right\rceil 4n + 5.$
- This criterion is fulfilled if $(g_j)_{j=1}^{\infty}$ has dense span in $L^2(\partial\Omega)$, and sufficiently many g_j are used.

$$(e_j \in \mathbb{R}^n : j\text{-th unit vector, } e_j' := \mathbb{1} - e_j \in \mathbb{R}^n : \text{negated } j\text{-th unit vector})$$

Explicit, easy-to-check criterion whether a desired resolution can be achieved with a certain number of measurements

Achievable resolution can be characterized.

Theorem. (H., Optim. Lett. 2021)

- Let the criterion hold with lower bound $\lambda > 0$.
- ▶ Let $\delta > 0$, and $Y^{\delta} \in \mathbb{R}^{m \times m}$ be symmetric with $\|\hat{Y} Y^{\delta}\|_{2} \le \delta$.

Then there exist solutions of

minimize
$$\|\sigma\|_1 = \sum_{j=1}^n \sigma_j$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq Y^{\delta} + \delta I$.

and every such minimum σ^{δ} fulfills

$$\|\hat{\sigma} - \sigma^{\delta}\|_{\infty} \le \frac{2\delta(n-1)}{\lambda}$$

Explicit error estimates, convergence for $\delta \rightarrow 0$.

Proof ingredients & possible generalizations

▶ Monotonicity & Convexity: $F: \mathbb{R}^n_+ \to \mathbb{S}_m \subset \mathbb{R}^{m \times m}$ fulfills

$$F'(\sigma)d \le 0 \qquad \qquad \text{for all } \sigma \in \mathbb{R}^n_+, \ 0 \le d \in \mathbb{R}^n$$

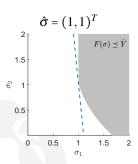
$$F(\tau) - F(\sigma) \ge F'(\sigma)(\tau - \sigma) \qquad \text{for all } \sigma, \tau \in \mathbb{R}^n_+$$

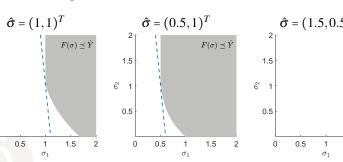
- holds for general elliptic PDEs (H., Jahresber. DMV, 2021)
- ▶ Localized potentials: For any C > 0, there exist currents g s.t.

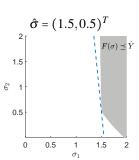
$$g^{T}(F'(\sigma)(e_{j}-Ce'_{j}))g = \int_{\Gamma_{j}} |\nabla u|^{2} dx - C \int_{\Gamma \setminus \Gamma_{j}} |\nabla u|^{2} > 0$$

- $\implies \lambda_{\max}(F'(z)(e_j Ce'_j)) > 0$ for suff. many measurem.
- holds for many elliptic problems, but in more complicated form

Back to the bold guess in EIT







Robin problem: $\hat{\sigma}$ minimizes

$$\mathbb{1}^T \sigma = \sum_{i=1}^n \sigma_i \to \min! \quad \text{s.t.} \quad \sigma \in [a,b]^n, \ F(\sigma) \leq \hat{Y}.$$

EIT: Can we find $c \in \mathbb{R}^n$ so that $\hat{\sigma}$ minimizes

$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i \to \min!$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$?

Convex reformulation for EIT

Theorem. (H., arxiv:2203.16779, submitted last week)

If sufficiently many measurements are taken, then:

- ▶ EIT forward mapping $F: [a,b]^n \to \mathbb{S}_m \subset \mathbb{R}^{m \times m}$ is injective.
- ▶ Derivative $F'(\sigma)$ is injective for all $\sigma \in [a,b]^n$.
- ► There exists $c \in \mathbb{R}^n_+$ so that for all $\hat{\sigma} \in [a,b]^n$, $\hat{Y} = \Lambda(\hat{\sigma})$:

 $\hat{\sigma}$ is the unique solution of the convex problem

minimize
$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i$$
 s.t. $\sigma \in [a,b]^n$, $F(\sigma) \leq \hat{Y}$.

(Error estimates for noisy data $Y^{\delta} \approx \hat{Y}$ also hold.)

The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization

Conclusions

For elliptic coefficient inverse problems

- least-squares residuum functionals may be highly non-convex
- local minima are usually useless

Possible remedy

- utilize monotonicity & convexity with respect to Loewner order
- utilize localized potentials to control directional derivatives

Equivalent convex reformulations are possible

- globally convergent solution algorithms are possible
- error estimates for noisy data are possible
- For simple Robin problem
 - explicit characterizations of achievable resolution
 - explicit error estimates for noisy data