

Stable Differentiation of Monte Carlo Priced Options with Discontinuous Payoff

Bastian Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

22nd MathFinance Conference, Frankfurt, Germany, March 21–22, 2022.

Motivation

Monte Carlo pricing of option with discontinuous payoff (here: autocallable, aka express-certificate or barrier-option)

Standard Monte Carlo (blue line)

- works well for pricing
- fails for calculating derivatives, e.g., $\Delta(S_0) = \frac{\partial}{\partial S}V(S_0)$

Can we stably calculate greeks of discontinuous payoff options?

The problem of unstable greeks

Monte Carlo Option Pricing

Today's option value $V(S_0)$

- = (discounted) expected payoff at maturity
- \approx (discounted) mean payoff of randomly sampled paths

Simple example for instability

European "plain vanilla" call option: $V(S_T) = \max{S_T - K, 0}$

MC pricing without resetting random seed

When #MC samples $\rightarrow \infty$:

- MC approximations of $V(S_0)$ converge against true $V(S_0)$
- MC approximations of $\Delta(S_0)$ do not converge

Mathematical background:

Convergence of function values \implies Convergence of derivative(s)

Differentiation is intrinsically unstable.

MC pricing with resetting random seed

When #MC samples $\rightarrow \infty$:

Function values, and derivative(s) converge.

MC pricing with convergence of values and derivative(s) is possible.

Reason for stable derivatives

Random walk starting with S_0 and with $S_0 + \delta S$:

w/o resetting random seed

with resetting random seed

With resetting random seed:

- Final path value S_T depends Lipschitz continuously on S₀
- European Option Payoff depends Lipschitz continuously on S_T
- \sim Path payoff depends Lipschitz continuously on S_0

Alm/H./Harrach/Keller, JCF 2013:

MC estimator allows stable differentiation (w.r.t. S_0) if path payoffs depend Lipschitz continuously on S_0 and on the random samples.

Analogous result hold for other parameter, e.g., other greeks.

Consequence: For options with L.-continuous payoffs functions:

Resetting random seed yields stable greeks

Unstable greeks with and w/o resetting random seed.

B. Harrach: Stable Differentiation of Monte Carlo Priced Options with Discontinuous Payoff

Stable greeks for discontinuous payoffs

Barrier option / Autocallable / Express Certificate

Discontinuous, path-dependent payoff:

$$V(S_{t_1},...,S_{t_m}) = \begin{cases} e^{-r(t_j-t_0)}Q_j & \text{if } S_{t_i} < B \le S(t_j) \ \forall i < j, \\ e^{-r(t_m-t_0)}Q(S_{t_m}) & \text{if } S_{t_j} < B & \forall j \in \{1,...,m\}. \end{cases}$$

 Lots of variants, e.g. "down-and-out", continuous barrier, multivariate options (on max/min of multiple underlyings), ...

Stable greeks for autocallables

One-step-survival (Glassermann/Staum, Operations Research 2001)

- Enforce MC paths to not hit the barrier (conditional sampling, draw from truncated stochastic distribution)
- Correct for missing barrier hit
 - p: probability of path not hitting barrier in j + 1-th step
 - Add $(1-p)e^{-r(t_{j+1}-t_0)}Q_{j+1}$ to path payoff
 - Reduce weight of all future path payoffs by p

Mathematical formulation (Alm/H./Harrach/Keller, JCF 2013)

- Replace pathwise discontinuous payoff by (mathematically equivalent!) pathwise L.-continuous payoff
- → OSS-MC allows stable differentiation

Implementation

Naive MC (~ unstable greeks)
Reset random seed
for $n = 1,, N$ do
for $j = 0,, m - 1$ do
$\tau := t_{i+1} - t_i$
Sample $u_i \sim U(0,1)$
$S_{j+1} := S_j e^{\left(r - \sigma^2/2\right)\tau + \sigma\sqrt{\tau}\Phi^{-1}(u_j)}$
if $S_{j+1} \ge B$ then
$P_n := e^{-r(t_{j+1}-t_0)}Q_{j+1}$; break
else if $j + 1 = m$ then
$P_n := e^{-r(t_m - t_0)}Q(S_m)$
end if
end for
end for
roturn $V(S) \approx 1 \Sigma^N P$
$V(30) \approx \overline{N} \sum_{n=1} r_n$

OSS-MC (~> stable greeks) Reset random seed for $n = 1, \ldots, N$ do $P_n := 0, L := 1$ for i = 0, ..., m - 1 do $\tau := t_{j+1} - t_j$ Sample $u_i \sim U(0,1)$ $p := \Phi\left(\frac{\ln(B/S_j) - (r - \sigma^2/2)\tau}{\sigma\sqrt{\tau}}\right)$ $S_{j+1} := S_j e^{\left(r - \sigma^2 / 2\right)\tau + \sigma \sqrt{\tau} \Phi^{-1}(pu_j)}$ $P_n := P_n + (1 - p)L e^{-r(t_{j+1} - t_0)} Q_{j+1}$ L := pLend for $P_n := P_n + Le^{-r(t_m - t_0)} O(S_m)$ end for return $V(S_0) \approx \frac{1}{N} \sum_{n=1}^{N} P_n$

Easy-to-implement, replace if-clauses by probability weights

Example: Univariate Autocallable Option

Standard Monte Carlo (blue line)

- works well for pricing
- fails for calculating derivatives, e.g., $\Delta(S_0) = \frac{\partial}{\partial S}V(S_0)$

One-step-survival Monte Carlo (black line)

works well for pricing and for calculating derivatives

Multivariate Case

Multivariate case (Alm/H./Harrach/Keller, JCF 2013):

- Barrier hit depends on max/min of multiple underlyings
- Requires smooth conditional sampling of survival zone
- Acception-rejection strategies not applicable (not smooth!)
- GHK importance sampling:
 - sample one dimension after the other (smooth)
 - correct for wrong prob. distribution by weight factors (smooth)
- For L-shaped survival zone (barrier on min. of underlyings):
 Additional rotation needed for continuous parametrization

Results for multivariate autocallable option

Summary

- Differentiation is intrinsically unstable
 - $\rightsquigarrow\,$ Convergent pricing algorithm may still yield unstable greeks
- Stable differentiation possible if path payoffs depend L.-continously on parameter and random samples
 - → Stable greeks for discont. payoff possible by one-step-survival
 - Multivariate cases can be treated by subsequent dimension sampling plus importance sampling

Extensions

 Ideas extend to pathwise sensitivity calculations, continuous barrier options, and parameter calibration problems

References

- Alm/H./Harrach/Keller: A Monte Carlo pricing algorithm for autocallables that allows for stable differentiation, J. Comput. Finance 2013
- Gerstner/H./Roth: Monte Carlo pathwise sensitivities for barrier options, *JCF* 2020
- Gerstner/H./Roth: Convergence of Milstein Brownian bridge Monte Carlo methods and stable Greeks calculation arXiv:1906.11002