

# Global convergence and stable invertibility for a Robin transmission Calderón problem with finitely many measurements

# **Bastian Harrach**

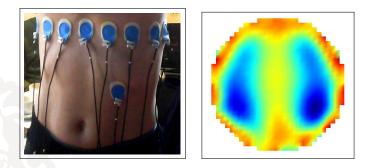
http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

10th International Conference Inverse Problems: Modelling and Simulation (IPMS) Malta, May 22–28, 2022.

# Electrical impedance tomography (EIT)





- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject



#### Calderón problem

Can we recover  $\sigma \in L^\infty_+(\Omega)$  in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{u}) = 0, \quad \boldsymbol{x} \in \boldsymbol{\Omega} \subset \mathbb{R}^d \qquad (1)$$

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$ 

Equivalent: Recover  $\sigma$  from Neumann-to-Dirichlet-Operator

 $\Lambda(\sigma): L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$ 

where *u* solves (1) with  $\sigma \partial_v u |_{\partial \Omega} = g$ .



# Challenges in idealized EIT

# Mathematical idealization of EIT ~> Calderón problem

- infinitely many unknowns  $\sigma \in L^{\infty}_{+}(\Omega)$
- infinitely many measurements  $\Lambda(\sigma) \in \mathcal{L}(L^2_{\diamond}(\partial \Omega))$
- nonlinear forward map  $\sigma \mapsto \Lambda(\sigma)$

Mathematical challenges (and a very incomplete literature list)

- Uniqueness? Does Λ(σ) determine σ?
  (Calderón 1980, Astala/Päivärinta '06, Krupchyk/Uhlmann '16, Caro/Rogers '16, ...)
- Stability?  $\Lambda^{-1}$ :  $\Lambda(\sigma) \mapsto \sigma$  continuous?

(Alessandrini/Vessella '05, Beretta/Francini '11, Rüland/Sincich '19, Alberti/Santacesaria '19, ...)

• Convergence (local/global)? How to determine  $\sigma$  from  $\Lambda(\sigma)$ ? (Local convergence/TCC: Lechleiter/Rieder '08, Kindermann '21, Global convergence: Kilbanov/Zhang '19)

#### Consequences for practical EIT?

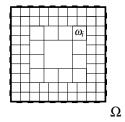


# EIT in practice

- Finitely many unknowns,  $\sigma$  pcw. const. on given resolution  $\Omega = \bigcup_{i=1}^{n} \omega_i$
- Finitely many measurements

 $\int_{\partial\Omega}g_j\Lambda(\sigma)g_k\,\mathrm{d}s$ 

for given currents  $g_1, \ldots, g_m \in L^2_\diamond(\partial \Omega)$ 



Finite-dimensional inverse problem: Determine

$$\boldsymbol{\sigma} = \begin{pmatrix} \boldsymbol{\sigma}_1 \\ \vdots \\ \boldsymbol{\sigma}_n \end{pmatrix} \in \mathbb{R}^n_+ \quad \text{from } F(\boldsymbol{\sigma}) = \left( \int_{\partial \Omega} g_j \Lambda(\boldsymbol{\sigma}) g_k \, \mathrm{d}s \right)_{j,k=1}^m \in \mathbb{S}_m \subset \mathbb{R}^{m \times m}.$$

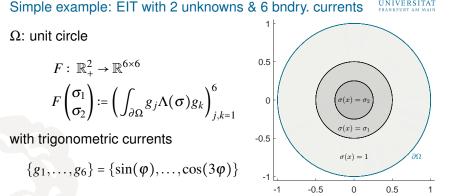


Inverse problem: Determine  $\sigma \in \mathbb{R}^n_+$  from  $Y = F(\sigma) \in \mathbb{R}^{m \times m}$ .

For a fixed desired resolution:

- How many measurements uniquely determine  $\sigma$ ?
- Stability / error estimates for noisy data  $Y^{\delta} \approx F(\sigma)$ ?
- Numerical algorithm to determine  $\sigma \in \mathbb{R}^n_+$  from  $Y^{\delta} \approx F(\sigma)$ ?
- Global/local convergence of algorithm?

Next slides: The problem of local convergence and a convex reformulation



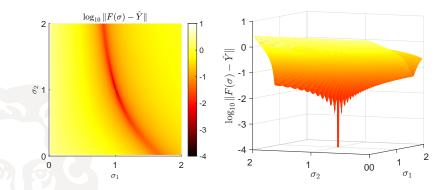
GOETH

Inverse problem: Reconstruct  $\hat{\sigma} \in \mathbb{R}^2_+$  from  $\hat{Y} = F(\hat{\sigma}) \in \mathbb{S}_6 \subset \mathbb{R}^{6 \times 6}$ 

Natural approach: Least squares data fitting minimize  $||F(\sigma) - \hat{Y}||_{F}^{2}$  (+ Regularization)



# Problem of local minima



Numerical results indicate

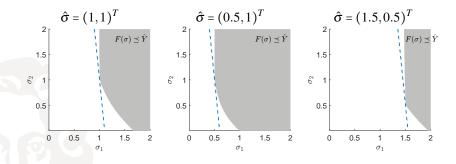
- $\hat{Y} = F(\hat{\sigma})$  uniquely determines  $\hat{\sigma}$ ...
  - ... but residuum is highly non-convex, many local minima

Are globally convergent algorithms impossible?



#### Conjecture

# Inverse problem: Reconstruct $\hat{\sigma} \in \mathbb{R}^2_+$ from $\hat{Y} = F(\hat{\sigma}) \in \mathbb{R}^{6 \times 6}$



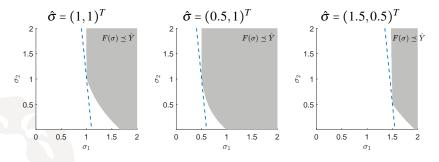
Conjecture.

 $\hat{\sigma}$  is the lower left corner of the convex set  $F(\sigma) \leq \hat{Y}$ .

("≤": Loewner / semidefiniteness order)



#### Mathematical formulation



Conjecture.  $\exists c \in \mathbb{R}^n$  so that true solution  $\hat{\sigma}$  minimizes

$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i \to \min!$$
 s.t.  $\sigma \in [a,b]^n, F(\sigma) \leq \hat{Y}.$ 

For a similar but simpler Robin problem:

- Conjecture holds with c = 1 (H., Optim. Lett. 2021)
- Global Newton convergence is possible (H., Numer. Math. 2021)



# Convex reformulation for EIT

#### Theorem. (H., arxiv:2203.16779)

If sufficiently many measurements are taken, then:

- ▶ EIT forward mapping  $F : [a,b]^n \to \mathbb{S}_m \subset \mathbb{R}^{m \times m}$  is injective.
- Derivative  $F'(\sigma)$  is injective for all  $\sigma \in [a,b]^n$ .
- There exists  $c \in \mathbb{R}^n_+$  so that for all  $\hat{\sigma} \in [a,b]^n$ ,  $\hat{Y} = \Lambda(\hat{\sigma})$ :

 $\hat{\sigma}$  is the unique solution of the convex problem

minimize 
$$c^T \boldsymbol{\sigma} = \sum_{i=1}^n c_i \boldsymbol{\sigma}_i$$
 s.t.  $\boldsymbol{\sigma} \in [a,b]^n, F(\boldsymbol{\sigma}) \leq \hat{Y}.$ 

# The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization



# Stability and error estimates

Theorem (continued). (H., arxiv:2203.16779) There exists  $\lambda > 0$  so that

- for all  $\hat{\sigma} \in [a,b]^n$ ,  $\hat{Y} \coloneqq \Lambda(\hat{\sigma})$ ,
- and all  $\delta > 0$ ,  $Y^{\delta} \in \mathbb{S}_m \subset \mathbb{R}^{m \times m}$ , with  $||Y^{\delta} \hat{Y}|| \leq \delta$ ,

the convex semidefinite optimization problem

minimize 
$$c^T \sigma = \sum_{i=1}^n c_i \sigma_i$$
 s.t.  $\sigma \in [a,b]^n, F(\sigma) \leq Y^{\delta} + \delta I.$ 

possesses a minimizer  $\sigma^{\delta}$ . Every such minimizer fulfills

$$\|\sigma^{\delta}-\hat{\sigma}\|_{c,\infty}\leq \frac{n-1}{\lambda}\delta.$$

 $(\|\cdot\|_{c,\infty}: c$ -weighted maximum norm)

Error estimates for noisy data  $Y^{\delta} \approx \hat{Y}$  also hold.

#### GOETHE UNIVERSITÄT FRANKFURT AM MAIN

# Conclusions

# For elliptic coefficient inverse problems

- least-squares residuum functionals may be highly non-convex
- local minima are usually useless

#### Possible remedy

- utilize monotonicity & convexity with respect to Loewner order
- utilize localized potentials to control directional derivatives

# Equivalent convex reformulations are possible

- globally convergent solution algorithms are possible
- error estimates for noisy data are possible
- For simple Robin problem
  - explicit characterizations of achievable resolution
  - explicit error estimates for noisy data