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Electrical impedance tomography
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Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω ⊂Rd (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω) → L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Challenges in idealized EIT

Mathematical idealization of EIT ↝ Calderón problem
▸ infinitely many unknowns σ ∈ L∞+ (Ω)
▸ infinitely many measurements Λ(σ) ∈ L(L2◇(∂Ω))
▸ nonlinear forward map σ ↦Λ(σ)

Mathematical challenges
▸ Uniqueness? Does Λ(σ) determine σ?
▸ Stability? Λ

−1 ∶ Λ(σ) ↦ σ continuous?
▸ Convergence (local/global)? How to determine σ from Λ(σ)?

Consequences for practical EIT?
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EIT in practice

▸ Finitely many unknowns, σ pcw. const.
on given resolution Ω = ⋃n

i=1 ωi

▸ Finitely many measurements

∫
∂Ω

g jΛ(σ)gk ds

for given currents g1, . . . ,gm ∈ L2◇(∂Ω)

ωi

Ω

Finite-dimensional inverse problem: Determine

σ =
⎛
⎜
⎝

σ1
⋮

σn

⎞
⎟
⎠
∈Rn

+ from F(σ) = (∫
∂Ω

g jΛ(σ)gk ds)
m

j,k=1
∈Rm×m.
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Mathematical challenges for practical EIT

Inverse problem: Determine σ ∈Rn
+ from Y = F(σ) ∈Rm×m.

For a fixed desired resolution:
▸ How many measurements uniquely determine σ?
▸ Stability / error estimates for noisy data Y δ ≈ F(σ)?
▸ Numerical algorithm to determine σ ∈Rn+ from Y δ ≈ F(σ)?
▸ Global/local convergence of algorithm?

This talk: The problem of local convergence, a bold guess, and
answers for a Robin problem (similar to but simpler than EIT)
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The problem of local minima and a bold guess
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Simple example: EIT with 2 unknowns & 6 bndry. currents

Ω: unit circle

F ∶ R2
+→R6×6

F (σ1
σ2

) ∶= (∫
∂Ω

g jΛ(σ)gk)
6

j,k=1

with trigonometric currents

{g1, . . . ,g6} = {sin(ϕ), . . . ,cos(3ϕ)}
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Inverse problem: Reconstruct σ̂ ∈R2+ from Ŷ = F(σ̂) ∈R6×6

Natural approach: Least squares data fitting

minimize ∥F(σ)−Ŷ∥2
F (+ Regularization)
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Problem of local minima
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Numerical results indicate

▸ Ŷ = F(σ̂) uniquely determines σ̂ . . .
▸ . . . but residuum is highly non-convex, many local minima

Are globally convergent algorithms impossible?
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Bold guess

Inverse problem: Reconstruct σ̂ ∈R2+ from Ŷ = F(σ̂) ∈R6×6

σ̂ = (1,1)T
σ̂ = (0.5,1)T

σ̂ = (1.5,0.5)T
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Bold conjecture.

σ̂ is the lower left corner of the convex set F(σ) ⪯ Ŷ .

(”⪯”: Loewner / semidefiniteness order)
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An inverse Robin coefficient problem
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EIT for corrosion detection

Cement pillar

Rebar corrosion

Electrodes

Non-destructive EIT-based corrosion detection:
▸ Apply electric currents on outer boundary ∂Ω

▸ Measure necessary voltages

↝ Detect corrosion on inner boundary Γ = ∂D
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Idealized mathematical model: Robin PDE

Electric potential u ∶ Ω→R solves

∆u = 0 in Ω∖Γ,(1)

∂νu∣∂Ω = g on ∂Ω,(2)

JuKΓ = 0 on Γ,(3)

J∂νuKΓ = σu on Γ(4)
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Inverse Problem: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2(∂Ω) → L2(∂Ω), g↦ u∣∂Ω,

where u solves Robin PDE (1)–(4).
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Finitely many measurements and unknowns

▸ Finitely many measurements:

∫
∂Ω

g jΛ(σ)gk ds for finitely many g1, . . . ,gm

▸ Finite desired resolution:

σ =
n

∑
j=1

σ jχΓ j with σ j ∈R, j = 1, . . . ,n

with partition Γ = ⋃n
j=1 Γ j

▸ A-priori bounds: σ ∶= (σ1, . . . ,σn)T ∈ [a,b]n, b > a > 0 known

Finite-dimensional non-linear inverse problem: Determine

σ = (σ j)n
j=1 ∈ [a,b]n from F(σ) ∶= (∫

∂Ω

g jΛ(σ)gk ds)
m

j,k=1
∈Rm×m
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Main result 1/3

Theorem. (H., Optim. Lett. 2021)

If sufficiently many measurements are taken, then
▸ Ŷ ∶= F(σ̂) ∈Rm×m uniquely determines σ̂ ∈ [a,b]n.
▸ σ̂ is the unique solution of

minimize ∥σ∥1 =
n

∑
j=1

σ j s.t. σ ∈ [a,b]n, F(σ) ⪯ Ŷ .

▸ The constraint set σ ∈ [a,b]n, F(σ) ⪯ Ŷ is convex.

↝ σ̂ is the lower left corner of the convex constraint set

↝ Problem can be solved by convex semidefinite programming

Global convergence is feasible.

(H., Numer. Math. 2020: Global Newton convergence for this Robin problem)
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Main result 2/3

Theorem. (H., Optim. Lett. 2021)

▸ Suff. many measurements are taken if λmax(F ′(z j,k)d j) > 0 for

z j,k ∶= a
2 e′j +(a+k a

4(n−1))e j ∈Rn+, d j ∶= 2b−a
a (n−1)e′j − 1

2 e j ∈Rn,

with j = 1, . . . ,n, k = 1, . . . ,⌈ 4(n−1)b
a ⌉−4n+5.

▸ This criterion is fulfilled if (g j)∞j=1 has dense span in L2(∂Ω),
and sufficiently many g j are used.

(e j ∈Rn: j-th unit vector, e′j ∶= 1−e j ∈Rn: negated j-th unit vector)

↝ Explicit, easy-to-check criterion whether a desired resolution
can be achieved with a certain number of measurements

Achievable resolution can be characterized.
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Main result 3/3

Theorem. (H., Optim. Lett. 2021)

▸ Let the criterion hold with lower bound λ > 0.
▸ Let δ > 0, and Y δ ∈Rm×m be symmetric with ∥Ŷ −Y δ ∥2 ≤ δ .

Then there exist solutions of

minimize ∥σ∥1 =
n

∑
j=1

σ j s.t. σ ∈ [a,b]n, F(σ) ⪯Y δ +δ I.

and every such minimum σ
δ fulfills

∥σ̂ −σ
δ ∥∞ ≤ 2δ(n−1)

λ

Explicit error estimates, convergence for δ → 0.
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Proof ingredients & possible generalizations

▸ Monotonicity & Convexity: F ∶ Rn+→ Sm ⊂Rm×m fulfills

F ′(σ)d ⪯ 0 for all σ ∈Rn
+, 0 ≤ d ∈Rn

F(τ)−F(σ) ⪰ F ′(σ)(τ −σ) for all σ ,τ ∈Rn
+

↝ holds for general elliptic PDEs (H., Jahresber. DMV, 2021)

▸ Localized potentials: For any C > 0, there exist currents g s.t.

gT (F ′(σ)(e j −Ce′j))g = ∫
Γ j

∣∇u∣2 dx−C∫
Γ∖Γ j

∣∇u∣2 > 0

Ô⇒ λmax(F ′(z)(e j −Ce′j)) > 0 for suff. many measurem.

↝ holds for many elliptic problems, but in more complicated form
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Origin of ideas

▸ Factorization Method for shape detection
▸ Kirsch 1998 (inverse scattering), Hanke & Brühl 1999 (EIT)
▸ Since then studied by: Anagnostopoulos, Arens, Arridge, Barth, Betcke,

Bondarenko, Charalambopoulos, Chaulet, Choi, Furuya, Griesmaier, Grinberg,

Haddar, Hakula, Harrach, Holder, Hu, Hyvönen, Kirsch, Kleefeld, Lechleiter,

Liu, Lu, Mustonen, Nachman, Päivärinta, Pursiainen, Ruiz, Schappel, Schmitt,

Scherzer, Seo, Sini, Teirilä, Zhang, . . .

▸ Ingredients of the Factorization Method
▸ Factorization: Λ(σ)−Λ(σ0) = LFL∗ ↝ Λ(σ) determines R(L)
▸ Range characterization: R(L) determines unknown shape

▸ Connection to monotonicity & localized potentials arguments:
▸ Factorization ↝ Monotonicity & Convexity (w.r.t. Loewner order)
▸ Range characterization ↝ Localized potentials
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Conclusions

For elliptic coefficient inverse problems
▸ least-squares residuum functionals may be highly non-convex
▸ local minima are usually useless

Possible remedy
▸ utilize monotonicity & convexity with respect to Loewner order
▸ utilize localized potentials to control directional derivatives

For an inverse Robin coefficient problem we can obtain
▸ equivalent reformulation as convex semidefinite program
▸ globally convergent solution algorithms
▸ explicit characterizations of achievable resolution
▸ explicit error estimates for noisy data

. . .
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Conclusions

. . .
and it all goes back to the Factorization Method

of Hanke, Brühl & Kirsch
. . .

Thank you, Martin, and happy
birthday!
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