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Electrical impedance tomography

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω ⊂Rd (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Challenges in idealized EIT

Mathematical idealization of EIT ↝ Calderón problem
▸ infinitely many unknowns σ ∈ L∞+ (Ω)
▸ infinitely many measurements Λ(σ) ∈L(L2

◇(∂Ω))
▸ nonlinear forward map σ ↦Λ(σ)

Mathematical challenges
▸ Uniqueness? Does Λ(σ) determine σ?
▸ Stability? Λ

−1 ∶ Λ(σ)↦ σ continuous?
▸ Convergence (local/global)? How to determine σ from Λ(σ)?

Consequences for practical EIT?
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EIT in practice

In practice
▸ finitely many unknowns, σ pcw. const.

on given resolution Ω =⋃m
i=1 ωi

▸ finitely many measurements

↝ Finite-dimensional inverse problem

ωi

Ω

Model for finitely many measurements:

▸ Galerkin projection PGnΛ(σ)PGn . PGn : orthoprojection to

G1 ⊆G2 ⊆ . . . ⊆ L2
◇(∂Ω), ⋃

n∈N
Gn = L2

◇(∂Ω)

▸ Better: use realistic electrode model
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Theoretical challenges in practical EIT

For a fixed desired resolution:
▸ Do finitely many measurements uniquely determine σ?

(. . . and how many measurements/electrodes do we need?)

▸ Is the resulting finite-dimensional inverse problem stable?
(. . . and how large is the stability constant / noise amplification?)

▸ Do the results hold for realistic electrode models?
(. . . and how can we derive globally convergent reconstruction algorithms?)

This talk: Affirmative answer to these challenges
(. . . and some handwaving comments)
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Uniqueness and stability

Given desired resolution Ω =⋃m
i=1 ωi, b > a > 0

F[a,b] = {σ ∈ L∞+ (Ω) ∶ a ≤ σ(x) ≤ b, σ pcw. const. on Ω}

and subspaces

G1 ⊆G2 ⊆ . . . ⊆ L2
◇(∂Ω), ⋃

n∈N
Gn = L2

◇(∂Ω).

Theorem. (H., IP 2019) There exists N ∈N and c > 0:

∥PGn(Λ(σ1)−Λ(σ2))PGn∥ ≥ c∥σ1−σ2∥ ∀σ1,σ2 ∈F[a,b], n ≥N.

Finitely many measurement uniquely determine σ at a given
resolution if enough measurements are being used
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Main tools for proof

Monotonicity lemma. (Kang/Seo/Sheen 1997, Ikehata 1998)

For all σ1,σ2 ∈ L∞+ (Ω), g ∈ L2
◇(∂Ω)

∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds ≥ ∫
∂Ω

gΛ
′(σ2)(σ1−σ2)g ds

= ∫
Ω

(σ2−σ1)∣∇ug
σ2 ∣

2 dx

Localized potentials lemma. (H. 2008, H./Ullrich 2013)

For pcw. anal. σ ∈ L∞+ (Ω), measurable D1,D2 ⊆Ω, intD1 /⊆ out∂ΩD2

∃(gk)k∈N ∈ L2
◇(∂Ω) ∶ ∫

D1

∣∇ugk
σ ∣2 dx→∞, ∫

D2

∣∇ugk
σ ∣2 dx→ 0.

(Closed outer hull out∂ΩD2: complement of all open sets connected to ∂Ω not intersecting D2)
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Sketch of proof 1/2

By self-adjointness

∥Λ(σ1)−Λ(σ2)∥ = sup
∥g∥=1

∣∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds∣

By monotonicity

∣∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds∣

=max{∫
∂Ω

g(Λ(σ1)−Λ(σ2))g ds, ∫
∂Ω

g(Λ(σ2)−Λ(σ1))g ds}

≥max{∫
∂Ω

gΛ
′(σ2)(σ1−σ2)g ds, ∫

∂Ω

gΛ
′(σ1)(σ2−σ1)g ds}

= ∥σ1−σ2∥ f (σ1,σ2,
σ1−σ2

∥σ1−σ2∥
,g)

with f (τ1,τ2,κ,g) ∶= max{∫∂Ω
gΛ
′(τ1)κg ds, −∫∂Ω

gΛ
′(τ2)(κ)g ds}
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Sketch of proof 2/2

▸ By last slide

∥Λ(σ1)−Λ(σ2)∥
∥σ1−σ2∥

≥ sup
∥g∥=1

f (σ1,σ2,
σ1−σ2

∥σ1−σ2∥
,g)

≥ inf
τ1,τ2,κ

sup
∥g∥=1

f (τ1,τ2,κ,g)

with infimum taken over compact set of all

τ1,τ2,κ pcw. const., τ1(x),τ2(x) ∈ [a,b], ∥κ∥ = 1

▸ f continuous ↝ sup f l.s.c. ↝ infimum is attained
▸ Localized potentials ↝ ∀τ1,τ2,κ ∶ ∃g ∶ f (τ1,τ2,κ,g) > 0

↝ ∃c > 0 ∶ ∥Λ(σ1)−Λ(σ2)∥ ≥ c∥σ1−σ2∥ .
(and Galerkin projection can be treated by another compactness argument) ◻
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Complete Electrode Model

∇⋅(σ∇u) = 0 in Ω

u∣Em + zσ∂νu∣Em = const. =∶Um

∫
Em

σ∂νu∣Em ds = Jm

σ∂νu = 0 else

EM

U = R[i, j]V

I = 1A

E1

E2

⋮

E j

Ei

ωi

Current-to-Voltage operator

RM(σ) ∶ RM
◇ →RM

◇ , (J1, . . . ,JM)↦ (U1, . . . ,UM).

Uniqueness and stability (for enough electrodes)?
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Uniqueness and Lipschitz-stability for fixed resolution

Assumptions:
▸ Increasing number of electrodes fulfills Hyvönen conditions
▸ F : finite-dimensional subset of pcw.-analytic functions

(e.g., pcw. constant on fixed a-priori known partition)

▸ Known background conductivity:
∃U nbr.hood of ∂Ω, σ0 ∈C∞, so that σ ∣U = σ0∣U for all σ ∈F

▸ A-prior known bounds
F[a,b] ∶= {σ ∈F ∶ a ≤ σ(x) ≤ b for all x ∈Ω}

Theorem. (H, IP 2019) ∃N ∈N, c > 0:

∥RM(σ1)−RM(σ2)∥L(RM◇ ) ≥ c∥σ1−σ2∥L∞(Ω) ∀σ1,σ2 ∈F[a,b],M ≥N.
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Conclusions and Outlook (on the application)

EIT with fixed resolution is uniquely and stably solvable if enough
electrodes are being used.

▸ EIT’s ill-posedness due to inf.-dimens., not due to non-linearity
▸ Stability gets worse (exponentially) for finer resolution

(For full NtD: Alessandrini/Vessella 2005, Rondi 2006)

Open questions:
▸ How many electrodes are required for a desired resolution?
▸ How good is the stability (error-amplification) in a given setting?
▸ Globally convergent solvers the discretized non-linear problem?
▸ Consequences of conductivity discretization?
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Conclusions and Outlook (on the method)

Stability can be proven by monotonicity and localized potentials

Advantages:
▸ Simple: No analytic construction of special solutions required.
▸ Flexible: Method already applied to show stability for

▸ Robin coefficient problem (H./Meftahi, SIAP 2019)
▸ Deep learning approach to EIT (Seo/Kim/Jargal/Lee/H. SIIMS, to appear)
▸ Fractional Calderón problem (H./Lin, arXiv:1903.08771)

▸ Constructive (possibly):
▸ In Robin coeff. problem, Lipschitz constant for given resolution

can be calculated by solving finitely many well-posed PDEs
▸ Identifying necessary meas. for desired resol. seems in reach
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