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Electrical impedance tomography ONIERSITAT

> Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject

B. Harrach: Monotonicity methods for medical imaging



Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQcR? (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulyq) : wusolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Generic approaches for inverting o — A(0) ENERSITAT

> Penalty-based regularization: Minimize Tikhonov functional
|Ameas —A(0) | “ra lo—oo % - min!

op: Initial guess or known reference state (e.g. exhaled state)

» Deep learning based methods:
Given training data {(0,,A(0y,)): n=1,...,N} minimize

N
>~ 62— £ (A(0))]* > min!
n=1

over all functions f € IDIL described by DL-network.

Advantages: Very flexible, additional data/unknowns easily added
Disadvantages: Almost no rigorous theory (convergence, resolution, .. .)

Is there any specific problem structure that we can use to derive
convergent algorithms?
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UNIVERSITAT

Ikehata-Kang-Seo-Sheen Monotonicity

For two conductivities 6y, 01 € L*(Q):

op<op = A(op)>A(oy)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

[ @=co)ivul> [ g(a(or)-Ae))e> [ Z(o1-0n)vuol
Q o0 Q 0O

for all solutions uq of

V- (00Vup) =0, 0Godyio|aq = §-
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The monotonicity method
for inclusion detection in EIT
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UNIVERSITAT

Monotonicity method

Sample inclusion detection problem (for ease of presentation)
» op=1
»o=1+xp
» Dopen, DcQ, QD connected

All of the following also holds for
> 0y pcw. analytic and known,
» 0 =0p+Kkxp with k€ L°(D),
> in any dimension n > 2,
» for partial boundary data on open subset I" ¢ dQ.
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Monotonicity method UNIVERSITAT

Sample inclusion detection problem
» op=1,06=1+xp, Dopen, DcQ, Q=D connected

Monotonicity
»17<0 = A(1)>A(0)

Monotonicity-based inclusion detection (Tamburrino/Rubinacci 2002):

BcD = 1+yp<oc = A(l+xg)>A(0)

Algorithm:
» Mark all balls B with A(1+xz) > A(0)
> Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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AM MAIN

Monotonicity method (for simple test example)

Theorem (H./ulirich, 2013)
BecD < A(l+yxp)>A(0).

For faster implementation:

BcD <« A(1)+3A(1)xs>A(0).

Shape can be reconstructed by linearized monotonicity tests.

Idea of proof: Combine monotonicity inequality:
2 G() 2
O] — O > A(oy) - Ao zf — (0] — 0
fg( 1= 00)|Vuol fmg( (00)-A(o1))g 961( 1= 00)|Vuo|

with localized potentials (H., 2008):

2
f |Vu(()k) dx— o0 and /
D, D,
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Monotonicity-based regularization ONIERSITAT

For real data: Monotonicity for regularizing residuum-based methods
» Rigorous convergence of reconstructed shape (H./Mach, 2016)
» Comparison with heuristic standard for tank data (H./Mach, 2018)

standard monoton.-regularized

> EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
> EIDORS standard solver: heuristic linearized method with Tikhonov regularization
> Dataset: iirc_.data_-2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

> using interpolated data on active electrodes (H., Inverse Problems 2015)
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Monotonicity-based
Uniqueness and Lipschitz-stability
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UNIVERSITAT

Uniqueness FRANKY D2 M M ATy

Monotonicity & localized potentials yield uniqueness results:

» Non-linear Calderén problem: (Kohn/Vogelius 1985, H./Seo 2010)
If o1 € L (Q) fulfills (UCP) and o, — 0 is pcw. analytic then

A(o1)-A(oy) implies o) =o0p.

» Linearized Calderdn problem: (H./Seo 2010)
If oy € L°(Q) fulfills (UCP) and k € L= (Q) is pcw. analytic then

A(o1)xk=0 implies Kk=0.

» Linearized & discretized Calderon problem: (Lechleiter/Rieder 2008)
With enough electrodes, the linearized Calder6én problem with
CEM is uniquely solvable in fin.-dim. subspaces of pcw. analytic
functions (e.g., pcw. polynomials of fixed degree on fixed partition).
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Nonlinear Calderén problem with electrode measurements ONIERSITAT

FRANKFURT AM MAIN

Complete Electrode Model »

} Ei
V- (oVu)=0 inQ ol 1y ]
ulg, +z00dyu|g, = const. =: Uy, E l
=1
-/Em vitlg,, ds =J, L TU i
E
coyu=0 else i

Ey

Current-to-Voltage operator

RM(G): RIZI_)RQ/Iv (Jla"'aJM)H(Uh'"vUM)'

What constraints on o can make the inverse problem
Ry (o) — o well-posed?
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UNIVERSITAT

Uniqueness and Lipschitz-stability for fixed resolution

Assumptions:
» Increasing number of electrodes fulfilling Hyvénen conditions
» F: finite-dimensional subset of pcw.-analytic functions
(e.g., pcw. constant on fixed a-priori known partition)
» Known background conductivity:
3U nbr.hood of dQ, 6y € C*, so that oy = 6|y forall 6 € F

> A-prior known bounds
Flap)={0€F:a<o(x)<bforalxeQ}

Theorem. (H,2019) AN € N, ¢ > O:

|Ru(01) =Ry (02)| Ly 2 c |01 =02 1) VO1,02 € Fyp),M2N.
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Proof (main ideas)

> Monotonicity (H/Ullrich, 2015)

(R (02)(01-02)) 10w = [ (02-00)|vul)]* v
<((Ru(01) ~Rm(02))J,J )y -
~ Lower bound on Lipschitz stability

IRv(01) =Ru(02)| > o102 Jnf sup fu (71,7, k,J),
7.7

2:K) JeRM
©
e]—'[a)b]x}'[a_b]xlc Wl

fu(t1, 72, k,J) = max { (R (11)x) J,J) .~ ((Ry (22) ) J,J) }
» Relation to NtD-operators, localized potentials & compactness

inf sup fu(t,72,x,J) >0
(1,m,%) JeRM
E]:[a,b]X]:[aﬁb]X’C Wi j]
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Conclusions UNIVERSITAT
Ikehata-Kang-Seo-Sheen Monotonicity yields

» fundamental relation between measurements and unknowns,

» convergent inclusion detection methods,

> rigorous regularizers for residuum-based methods,

> theoretical uniqueness and Lipschitz stability results.

Approach can be extended
> to partial boundary data, independently of dimension n > 2,
» to stochastic settings,

> at least partially to closely related problems
(diffuse optical tomography, magnetostatics, inverse scattering,
eddy-current equations, p-Laplacian, fractional diffusion, . ..)
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