

Monotonicity-based inverse scattering

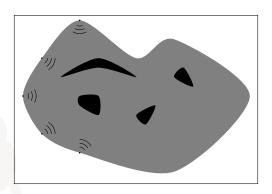
Bastian von Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

(joint work with M. Salo and V. Pohjola, University of Jyväskylä)

SIAM Conference on Imaging Science Bologna, Italy, June 5–8, 2018.



- Excite time-harmonic pressure wave in a bounded domain
- Aim: Detect defects/anomalies from scattering response
- Applications: Acoustic/EM tomography, non-destructive testing

Helmholtz equation

► Time-harmonic wave in bounded Lipschitz domain $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$

$$(\Delta + k^2 q) u = 0 \quad \text{in } \Omega \tag{1}$$

(k>0): non-resonant wavenumber, $q\in L^\infty(\Omega)$: sound speed, $u\in H^1(\Omega)$: acoustic pressure)

Idealized boundary mesurements: Neumann-to-Dirichlet map

$$\Lambda(q): L^2(\Sigma) \to L^2(\Sigma), \quad g \mapsto u|_{\Sigma},$$

where u solves (1) with $\partial_v u|_{\partial\Omega} = \left\{ \begin{array}{ll} g & \text{on } \Sigma, \\ 0 & \text{else.} \end{array} \right.$ ($\Sigma \subseteq \partial\Omega$: open boundary part)

Can we recover q from $\Lambda(q)$?

- Linearization (Born / single scattering) & Iteration
 - generic, popular, but no convergence theory
- Linear Sampling Methods / Factorization Methods (Scattering: Colton, Kirsch, Cakoni, Haddar, Arens, Lechleiter, Griesmaier, ... EIT: Hanke, Brühl, Hyvönen, H., Seo, ...)
 - rigorous for exact data, yields uniqueness results
 - non-intuitive criterion (range/infinity tests)
 - no convergence theory for noisy data, needs definiteness
- Monotonicity Method (for EIT) (Tamburrino, Rubinacci, H., Ullrich, Mach, Garde, ...)
 - rigorous theory (based on FM), yields uniqueness results
 - simple, convergent for noisy data, can treat indefinite case
 - can be combined with linearization approach

This talk: Extend monotonicity method to Helmholtz equation

Monotonicity Method (for simple test case in EIT)

- ▶ EIT: Detect $\sigma \in L^{\infty}_{+}(\Omega)$ in $\nabla \cdot (\sigma \nabla u) = 0$ from NtD $\Lambda(\sigma)$
- ▶ Inclusion detection: $\sigma = 1 + \chi_D$, D open, $\Omega \setminus \overline{D}$ connected
- Monotonicity:

$$\sigma_1 \leq \sigma_2 \implies \Lambda(\sigma_1) \geq \Lambda(\sigma_2)$$

(i.e., $\Lambda(\sigma_1) - \Lambda(\sigma_2)$ has **no** negative eigenvalues)

Monotonicity for inclusion detection:

(""": Tamburrino/Rubinacci 2002, "" & Linearization: H./Ullrich 2013)

$$B \subseteq D \iff \Lambda(1 + \chi_B) \ge \Lambda(1 + \chi_D)$$
$$\iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(1 + \chi_D)$$

Inclusion can be found by testing several small balls B

Monotonicity Method for Helmholtz (simple version)

- ► Helmholtz: Detect $q \in L^{\infty}(\Omega)$ in $(\Delta + k^2q)u = 0$ from NtD $\Lambda(q)$
- ► Scatterer detection: $q = 1 + \chi_D$, D open, $\Omega \setminus \overline{D}$ connected
- Monotonicity:

$$q_1 \le q_2 \implies \Lambda(q_1) \le_{\mathsf{fin}} \Lambda(q_2)$$

(i.e., $\Lambda(\sigma_2) - \Lambda(\sigma_1)$ has **only finitely many** negative eigenvalues)

Monotonicity for inverse scattering:

$$B \subseteq D \iff \Lambda(1 + \chi_B) \leq_{\mathsf{fin}} \Lambda(1 + \chi_D)$$
$$\iff \Lambda(1) + \Lambda'(1)\chi_B \leq_{\mathsf{fin}} \Lambda(1 + \chi_D)$$

Scatterer can be found by testing several small balls B

Next slides: Full results under general assumptions

Monotonicity for Helmholtz

Theorem. (H./Pohjola/Salo, submitted)

Let $q_1, q_2 \in L^{\infty}(\Omega)$, k > 0 no resonance. Then

$$q_1 \le q_2$$
 implies $\Lambda(q_1) \le_{d(q_2)} \Lambda(q_2)$,

(i.e., $\Lambda(\sigma_2) - \Lambda(\sigma_1)$ has **less than** $d(q_2)$ negative eigenvalues)

▶ $d(q_2)$ =no. of positive Neumann EVs of $\Delta + k^2q$ (always finite)

Larger sound speed leads to larger NtD-measurements

(in the sense of a modified Loewner order)

Local uniqueness for Helmholtz

Theorem. (H./Pohjola/Salo, submitted) Let

- $q_1, q_2 \in L^{\infty}(\Omega), k > 0$ no resonance,
- $O \subseteq \overline{\Omega}$ rel. open set connected to Σ with $q_1|_O \le q_2|_O$.

Then

$$q_1|_O \not\equiv q_2|_O$$
 implies $\Lambda(q_1) \not\geq_{\text{fin}} \Lambda(q_2)$.

Deviation in sound speed can be detected

(from eigenvalues in NtD difference)

 $\Lambda(1)$: NtD for homogeneous sound spped

 $\Lambda(q)$: NtD for unknown sound speed $(q \in L^{\infty}(\Omega), k > 0 \text{ no resonance})$

 $D \subseteq \Omega$: unknown scatterer (open, $\Omega \setminus \overline{D}$ connected)

 T_B : test operator for open $B \subseteq \Omega$ $(\int_{\Sigma} g T_B h := \int_B k^2 u_1^g u_1^h dx)$

Theorem. (H./Pohjola/Salo, submitted)

Let $1 \le q_{\min} \le q(x) \le q_{\max}$ for all $x \in D$ (a.e.), then

$$B \subseteq D$$
 implies $\alpha T_B \leq_{d(q_{\text{max}})} \Lambda(q) - \Lambda(1)$ for all $\alpha \leq q_{\text{min}} - 1$,

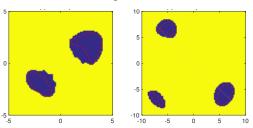
$$B \not\subseteq D$$
 implies $\alpha T_B \not\leq_{\text{fin}} \Lambda(q) - \Lambda(1)$ for all $\alpha > 0$.

(Similar result holds for $q_{min} \le q(x) \le q_{max} < 1$)

Scatterer can be localized by monotonicity tests

Remarks and Extensions

- ► Monotonicity tests require no forward solutions (only for $q_0 \equiv 1$).
- ► Tests can be easily regularized (~ convergence for noisy data)
- Extensions possible for background sound speed $q_0 \neq 1$
- Extensions possible for $\Omega \setminus \overline{D}$ not connected (using concept of inner and outer support)
- Extension possible for indefinite case (by shrinking large test domain)
- Extension to far-field scattering: (Griesmaier/H., submitted)



Proofs (main ideas): Well-posedness

▶ Standard variational formulation: $u \in H^1(\Omega)$ solves

$$\left(\Delta + k^2 q\right) u = 0 \quad \text{ in } \Omega, \qquad \partial_V u|_{\partial\Omega} = \left\{ \begin{array}{ll} g & \text{ on } \Sigma, \\ 0 & \text{ else,} \end{array} \right.$$

if and only if

$$b(u,v) \coloneqq \int_{\Omega} \left(\nabla u \cdot \nabla v - k^2 q u v \right) \mathrm{d}x = \int_{\Sigma} g v |_{\Sigma} \mathrm{d}s$$

- ▶ $b(\cdot,\cdot)$ is coercive plus compact depending analytically on $k \in \mathbb{C}$
- ► Analytic Fredholm theory ~ Unique solvability (except for discrete set of resonance frequencies)

From the variational formulation one obtains

$$\int_{\Sigma} g(\Lambda(q_2) - \Lambda(q_1)) g \, ds + \int_{\Omega} k^2 (q_1 - q_2) |u_1^{(g)}|^2 \, dx$$

$$= \int_{\Omega} \left(\left| \nabla (u_2^{(g)} - u_1^{(g)}) \right|^2 - k^2 q_2 |u_2^{(g)} - u_1^{(g)}|^2 \right) \, dx.$$

- Right hand side is coercive plus compact
- → Right hand side is non-negative is space of finite codimension
- Monotonicity inequality

$$\int_{\Sigma} g(\Lambda(q_2) - \Lambda(q_1)) g \, \mathrm{d}s \ge_{\mathsf{fin}} \int_{\Omega} k^2 (q_2 - q_1) |u_1^{(g)}|^2 \, \mathrm{d}x$$

• Converse monotonicity by controlling $u_1^{(g)}|_D$ on subset $D \subset \Omega$

Proofs (main ideas): Localized potentials

Localized potentials: Control $u^{(g)}|_D$ on subset $D \subseteq \Omega$

Neumann-to-Solution-operator:

$$L_D: L^2(\Sigma) \to L^2(D), \quad g \mapsto u^{(g)}|_D$$

- ▶ L_D^* : $L^2(D) \to L^2(\Sigma)$: Source-to-Dirichlet-operator
- ▶ Unique continuation: For "different" subsets $B,D \subseteq \Omega$

$$\mathcal{R}(L_D^*) \cap \mathcal{R}(L_B^*) = 0$$

▶ Duality argument: $\exists g_n \in L^2(\Sigma)$:

$$||u^{(g_n)}|_D|| = ||L_D g_n|| \to \infty$$
 and $||u^{(g_n)}|_B|| = ||L_B g_n|| \to 0$.

- $\operatorname{dim} \mathcal{R}(L_D^*), \operatorname{dim} (\mathcal{R}L_B^*) = \infty$
 - $\sim g_n$ can be chosen from space with finite codimension

Summary

Modified Loewner order for compact selfadjoint operators:

$$A \leq_d B$$
 : \iff $B-A$ has less than d negative EVs

Monotonicity and converse monotonicity for Helmholtz equation:

- Larger sound speed implies larger NtD measurements.
- Larger NtD implies that there is no boundary neighbourhood where sound speed is smaller.

Monotonicity approach yields

- Local uniqueness result for Helmholtz equation
- Simple but rigorously convergent scatterer detection algorithm