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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2◇(∂Ω) → L2◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Application: Electrical impedance tomography

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject

B. Harrach: Monotonicity methods for inverse coefficient problems



Inversion of σ ↦Λ(σ)?

Generic solvers for non-linear inverse problems:
▸ Linearize and regularize:

Λmeas ≈Λ(σ) ≈Λ(σ0)+Λ
′(σ0)(σ −σ0).

σ0: Initial guess or reference state (e.g. exhaled state)

↝ Linear inverse problem for σ

(Solve using linear regularization method, repeat for Newton-type algorithm.)

▸ Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

∥Λmeas−Λ(σ)∥2+α ∥σ −σ0∥2→min!

Advantages of generic optimization-based solvers:
▸ Very flexible, additional data/unknowns easily incorporated
▸ Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of σ ↦Λ(σ)?

Problems with generic optimization-based solvers
▸ High computational cost

▸ Evaluations of Λ(⋅) and Λ
′(⋅) require PDE solutions.

▸ PDE solutions too expensive for real-time imaging

▸ Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

▸ Convergence against true solution for exact meas. Λmeas?
(in the limit of infinite computation time)

▸ Convergence against true solution for noisy meas. Λ
δ
meas?

(in the limit of δ → 0 and infinite computation time)
▸ Global convergence? Resolution estimates for realistic noise?

Is there any specific problem structure that we can use to derive
convergent algorithms?
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Ikehata-Kang-Seo-Sheen Monotonicity

For two conductivities σ0,σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ≥Λ(σ1)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

∫
Ω

(σ1−σ0)∣∇u0∣2 ≥ ∫
∂Ω

g(Λ(σ0)−Λ(σ1))g ≥ ∫
Ω

σ0

σ1
(σ1−σ0)∣∇u0∣2

for all solutions u0 of

∇⋅(σ0∇u0) = 0, σ0∂νu0∣∂Ω = g.
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The monotonicity method
for inclusion detection in EIT
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Monotonicity method

Sample inclusion detection problem (for ease of presentation)

▸ σ0 = 1
▸ σ = 1+χD

▸ D open, D ⊆Ω, Ω∖D connected

All of the following also holds for
▸ σ0 pcw. analytic and known,
▸ σ = σ0+κχD with κ ∈ L∞+ (D),
▸ in any dimension n ≥ 2,
▸ for partial boundary data on open subset Γ ⊆ ∂Ω.
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Monotonicity method

Sample inclusion detection problem
▸ σ0 = 1, σ = 1+χD, D open, D ⊆Ω, Ω∖D connected

Monotonicity
▸ τ ≤ σ Ô⇒ Λ(τ) ≥Λ(σ)

Monotonicity-based inclusion detection (Tamburrino/Rubinacci 2002):

B ⊆D Ô⇒ 1+χB ≤ σ Ô⇒ Λ(1+χB) ≥Λ(σ)

Algorithm:
▸ Mark all balls B with Λ(1+χB) ≥Λ(σ)
▸ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Monotonicity method (for simple test example)

Theorem (H./Ullrich, 2013)

B ⊆D ⇐⇒ Λ(1+χB) ≥Λ(σ).

For faster implementation:

B ⊆D ⇐⇒ Λ(1)+ 1
2 Λ

′(1)χB ≥Λ(σ).
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Shape can be reconstructed by linearized monotonicity tests.

Next slides: Proof using monotonicity & localized potentials
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Localized potentials

Theorem (H., 2008)

Let σ0 fulfill unique continuation principle (UCP),

D1∩D2 = ∅, and Ω∖(D1∪D2) be connected with Σ.

Then there exist solutions u(k)
0 , k ∈N with

∫
D1

∣∇u(k)
0 ∣

2
dx→∞ and ∫

D2

∣∇u(k)
0 ∣

2
dx→ 0.

Σ

∣∇u0∣2 small

∣∇u0∣2 large
Σ

∣∇u0∣2 small

∣∇u0∣2 large
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Proof of converse monotonicity (for simple test example)

▸ Monotonicity: For all solutions uB for conductivity σB ∶= 1+χB

∫
D
∣∇uB∣2 dx−∫

B
∣∇uB∣2 dx = ∫

Ω

(σ −σB)∣∇uB∣2 dx

≥ ∫
∂Ω

g(Λ(1+χB)−Λ(σ))g

≥ ∫
Ω

σB

σ
(σ −σB)∣∇uB∣2 dx ≥ ∫

D

1
2
∣∇uB∣2 dx−∫

B
∣∇uB∣2 dx

▸ Localized potentials: If B /⊆D then we find u(k)
B with

∫
D
∣∇u(k)

B ∣2 dx→ 0, ∫
B
∣∇u(k)

B ∣2 dx→∞.

↝ B /⊆D implies Λ(1+χB)−Λ(σ) /≥ 0. ◻
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Monotonicity method

H./Ullrich, SIAM J. Math. Anal. 2013:

B ⊆D ⇐⇒ Λ(1+χB) ≥Λ(σ) ⇐⇒ Λ(1)+ 1
2

Λ
′(1)χB ≥Λ(σ)

▸ Yields theoretical uniqueness result
▸ Simple to implement, no PDE solutions
▸ Similar comput. cost as single Newton (linearization) step
▸ Rigorously detects unknown shape for exact data
▸ Convergence for noisy data Λ

δ
meas→Λ(σ)−Λ(1):

R(Λ
δ

meas,δ ,B) ∶= { 1 if 1
2 Λ

′(1)χB ≥Λ
δ
meas−δ I

0 else.

Then R(Λ
δ
meas,δ ,B) → 1 iff B ⊆D.
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Monotonicity-based regularization
of optimization-based methods
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Monotonicity method

Quantitative, pixel-based variant of monotonicity method:

▸ Pixel partition Ω = ⋃m
k=1 Pk

▸ Quantitative monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ
′(1)χPk ≥Λ(σ)−Λ(1)

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I

“Raise conductivity in each pixel until monotonicity test fails.”

▸ By theory of monotonicity method:

β
δ

k → βk and βk fulfills { βk = 0 if Pk /⊆D
βk ≥ 1

2 if Pk ⊆D

Plotting β
δ

k shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

▸ Monotonicity method rigorously converges for δ → 0 . . .
▸ . . . but the heuristic standard linearized method works much

better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization

▸ Standard linearized methods for EIT: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥2+α ∥κ∥2→min!

Choice of norms heuristic. No convergence theory!

▸ Monotonicity-based regularization: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥F→min!

under the constraint κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{1
2 ,βk}.

(∥ ⋅ ∥F : Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

▸ There exists unique minimizer κ̂ and

Pk ⊆ supp κ̂ ⇐⇒ Pk ⊆ supp(σ −1).
▸ Minimizer fulfills κ̂ =∑m

k=1 min{1/2,βk}χPk
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Monotonicity-based regularization

For noisy measurements Λ
δ
meas ≈Λ(σ)−Λ(1):

▸ Use regularized monotonicity tests

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I
(δ > 0: noise level in L(L2

◇(∂Ω))-norm)

▸ Minimize
∥Λ

′(1)κ
δ −Λ

δ

meas∥F→min!

under the constraint κ
δ ∣Pk = const., 0 ≤ κ

δ ∣Pk ≤min{1
2 ,β

δ

k }.

Theorem (H./Mach, Inverse Problems 2016)

▸ There exist minimizers κ
δ and κ

δ → κ̂ for δ → 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

▸ Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)

Monotonicity-regularization vs. community standard
(H./Mach, Trends Math. 2018)

▸ EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)▸ EIDORS standard solver: linearized method with Tikhonov regularization

▸ Dataset: iirc data 2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

▸ using interpolated data on active electrodes (H., Inverse Problems 2015)
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Monotonicity-based
Uniqueness and Lipschitz-stability
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Uniqueness

Monotonicity & localized potentials yield uniqueness results:

▸ Non-linear Calderón problem: (Kohn/Vogelius 1985, H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and σ2−σ1 is pcw. analytic then

Λ(σ1)−Λ(σ2) implies σ1 = σ2.

▸ Linearized Calderón problem: (H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and κ ∈ L∞(Ω) is pcw. analytic then

Λ
′(σ1)κ = 0 implies κ = 0.

▸ Linearized & discretized Calderón problem: (Lechleiter/Rieder 2008)

With enough electrodes, the linearized Calderón problem with
CEM is uniquely solvable in fin.-dim. subspaces of pcw. analytic
functions (e.g., pcw. polynomials of fixed degree on fixed partition).
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Nonlinear Calderón problem with electrode measurements

Complete Electrode Model

∇⋅(σ∇u) = 0 in Ω

u∣Em + zσ∂νu∣Em = const. =∶Um

∫
Em

σ∂νu∣Em ds = Jm

σ∂νu = 0 else
EM

U = R[i, j]V

I = 1A

E1

E2

⋮
E j

Ei

ωi

Current-to-Voltage operator

RM(σ) ∶ RM◇ →RM◇ , (J1, . . . ,JM) ↦ (U1, . . . ,UM).

Can we uniquely and stably recover σ from R(σ)?
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Uniqueness and Lipschitz-stability

Assumptions:
▸ Increasing number of electrodes fulfilling Hyvönen conditions
▸ F : finite-dimensional subset of pcw.-analytic functions

(e.g., pcw. constant on fixed a-priori known partition)

▸ Known background conductivity:
∃U nbr.hood of ∂Ω, σ0 ∈C∞, so that σ ∣U = σ0∣U for all σ ∈ F

▸ A-prior known bounds
F[a,b] ∶= {σ ∈ F ∶ a ≤ σ(x) ≤ b for all x ∈Ω}

Theorem. (H, submitted) ∃N ∈N, c > 0:

∥RM(σ1)−RM(σ2)∥L(RM
◇ ) ≥ c∥σ1−σ2∥L∞(Ω) ∀σ1,σ2 ∈F[a,b],M ≥N.
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Proof (main ideas)

▸ Monotonicity (H/Ullrich, 2015)

⟨(R′(σ2)(σ1−σ2))J,J⟩M = ∫
Ω

(σ2−σ1)∣∇u(J)
σ2 ∣2 dx

≤ ⟨(RM(σ1)−RM(σ2))J,J⟩M .

↝ Lower bound on Lipschitz stability

∥RM(σ1)−RM(σ2)∥ ≥ ∥σ1−σ2∥ inf
(τ1 ,τ2 ,κ)

∈F[a,b]×F[a,b]×K

sup
J∈RM

◇
∥J∥ =1

fM(τ1,τ2,κ,J),

fM(τ1,τ2,κ,J) ∶=max{⟨(R′M(τ1)κ)J,J⟩ ,−⟨(R′M(τ2)κ)J,J⟩} ,
▸ Relation to NtD-operators, localized potentials & compactness

inf
(τ1 ,τ2 ,κ)

∈F[a,b]×F[a,b]×K

sup
J∈RM

◇
∥J∥ =1

fM(τ1,τ2,κ,J) > 0

◻
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Conclusions

Ikehata-Kang-Seo-Sheen Monotonicity yields
▸ fundamental relation between measurements and unknowns,
▸ convergent inclusion detection methods,
▸ rigorous regularizers for residuum-based methods,
▸ theoretical uniqueness and Lipschitz stability results.

Approach can be extended
▸ to partial boundary data, independently of dimension n ≥ 2,
▸ to stochastic settings,
▸ at least partially to closely related problems

(diffuse optical tomography, magnetostatics, inverse scattering,

eddy-current equations, p-Laplacian, fractional diffusion, . . . )
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