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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω ⊂Rd (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Application: Electrical impedance tomography

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject
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Generic approaches for inverting σ ↦Λ(σ)

▸ Penalty-based regularization: Minimize Tikhonov functional

∥Λmeas−Λ(σ)∥2+α ∥σ −σ0∥2→min!

σ0: Initial guess or known reference state (e.g. exhaled state)

▸ Deep learning based methods:
Given training data {(σn,Λ(σn)) ∶ n = 1, . . . ,N} minimize

N

∑
n=1
∥σn− f (Λ(σn))∥2→min!

over all functions f ∈DL described by DL-network.

Advantages: Very flexible, additional data/unknowns easily added
Disadvantages: Almost no rigorous theory (convergence, resolution, . . . )

Is there any specific problem structure that we can use to derive
convergent algorithms?
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Ikehata-Kang-Seo-Sheen Monotonicity

For two conductivities σ0,σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ≥Λ(σ1)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

∫
Ω

(σ1−σ0)∣∇u0∣2 ≥ ∫
∂Ω

g(Λ(σ0)−Λ(σ1))g ≥ ∫
Ω

σ0

σ1
(σ1−σ0)∣∇u0∣2

for all solutions u0 of

∇⋅(σ0∇u0) = 0, σ0∂νu0∣∂Ω = g.

B. Harrach: Monotonicity methods for inverse coefficient problems



The monotonicity method
for inclusion detection in EIT
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Monotonicity method

Sample inclusion detection problem (for ease of presentation)

▸ σ0 = 1
▸ σ = 1+χD

▸ D open, D ⊆Ω, Ω∖D connected

All of the following also holds for
▸ σ0 pcw. analytic and known,
▸ σ = σ0+κχD with κ ∈ L∞+ (D),
▸ in any dimension n ≥ 2,
▸ for partial boundary data on open subset Γ ⊆ ∂Ω.
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Monotonicity method

Sample inclusion detection problem
▸ σ0 = 1, σ = 1+χD, D open, D ⊆Ω, Ω∖D connected

Monotonicity
▸ τ ≤ σ Ô⇒ Λ(τ) ≥Λ(σ)

Monotonicity-based inclusion detection (Tamburrino/Rubinacci 2002):

B ⊆D Ô⇒ 1+χB ≤ σ Ô⇒ Λ(1+χB) ≥Λ(σ)

Algorithm:
▸ Mark all balls B with Λ(1+χB) ≥Λ(σ)
▸ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Monotonicity method (for simple test example)

Theorem (H./Ullrich, 2013)

B ⊆D ⇐⇒ Λ(1+χB) ≥Λ(σ).

For faster implementation:

B ⊆D ⇐⇒ Λ(1)+ 1
2 Λ

′(1)χB ≥Λ(σ).
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Shape can be reconstructed by linearized monotonicity tests.

Idea of proof: Combine monotonicity inequality:

∫
Ω

(σ1−σ0)∣∇u0∣2 ≥∫
∂Ω

g(Λ(σ0)−Λ(σ1))g ≥∫
Ω

σ0

σ1
(σ1−σ0)∣∇u0∣2

with localized potentials (H., 2008):

∫
D1

∣∇u(k)
0 ∣

2
dx→∞ and ∫

D2

∣∇u(k)
0 ∣

2
dx→ 0.
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Monotonicity-based regularization

For real data: Monotonicity for regularizing residuum-based methods

▸ Rigorous convergence of reconstructed shape (H./Mach, 2016)

▸ Comparison with heuristic standard for tank data (H./Mach, 2018)

standard monoton.-regularized

▸ EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
▸ EIDORS standard solver: heuristic linearized method with Tikhonov regularization

▸ Dataset: iirc data 2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

▸ using interpolated data on active electrodes (H., Inverse Problems 2015)
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Monotonicity-based
Uniqueness and Lipschitz-stability
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Uniqueness

Monotonicity & localized potentials yield uniqueness results:

▸ Non-linear Calderón problem: (Kohn/Vogelius 1985, H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and σ2−σ1 is pcw. analytic then

Λ(σ1)−Λ(σ2) implies σ1 = σ2.

▸ Linearized Calderón problem: (H./Seo 2010)

If σ1 ∈ L∞+ (Ω) fulfills (UCP) and κ ∈ L∞(Ω) is pcw. analytic then

Λ
′(σ1)κ = 0 implies κ = 0.

▸ Linearized & discretized Calderón problem: (Lechleiter/Rieder 2008)

With enough electrodes, the linearized Calderón problem with
CEM is uniquely solvable in fin.-dim. subspaces of pcw. analytic
functions (e.g., pcw. polynomials of fixed degree on fixed partition).
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Nonlinear Calderón problem with electrode measurements

Complete Electrode Model

∇⋅(σ∇u) = 0 in Ω

u∣Em + zσ∂νu∣Em = const. =∶Um

∫
Em

σ∂νu∣Em ds = Jm

σ∂νu = 0 else
EM

U = R[i, j]V

I = 1A

E1

E2

⋮

E j

Ei

ωi

Current-to-Voltage operator

RM(σ) ∶ RM
◇ →RM

◇ , (J1, . . . ,JM)↦ (U1, . . . ,UM).

What constraints on σ can make the inverse problem
RM(σ)↦ σ well-posed?
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Uniqueness and Lipschitz-stability for fixed resolution

Assumptions:
▸ Increasing number of electrodes fulfilling Hyvönen conditions
▸ F : finite-dimensional subset of pcw.-analytic functions

(e.g., pcw. constant on fixed a-priori known partition)

▸ Known background conductivity:
∃U nbr.hood of ∂Ω, σ0 ∈C∞, so that σ ∣U = σ0∣U for all σ ∈F

▸ A-prior known bounds
F[a,b] ∶= {σ ∈F ∶ a ≤ σ(x) ≤ b for all x ∈Ω}

Theorem. (H, submitted) ∃N ∈N, c > 0:

∥RM(σ1)−RM(σ2)∥L(RM
◇ ) ≥ c∥σ1−σ2∥L∞(Ω) ∀σ1,σ2 ∈F[a,b],M ≥N.
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Proof (main ideas)

▸ Monotonicity (H/Ullrich, 2015)

⟨(R′(σ2)(σ1−σ2))J,J⟩M = ∫
Ω

(σ2−σ1)∣∇u(J)
σ2 ∣

2 dx

≤ ⟨(RM(σ1)−RM(σ2))J,J⟩M .

↝ Lower bound on Lipschitz stability

∥RM(σ1)−RM(σ2)∥ ≥ ∥σ1−σ2∥ inf
(τ1 ,τ2 ,κ)

∈F[a,b]×F[a,b]×K

sup
J∈RM

◇
∥J∥=1

fM(τ1,τ2,κ,J),

fM(τ1,τ2,κ,J) ∶=max{⟨(R′M(τ1)κ)J,J⟩ ,−⟨(R′M(τ2)κ)J,J⟩} ,
▸ Relation to NtD-operators, localized potentials & compactness

inf
(τ1 ,τ2 ,κ)

∈F[a,b]×F[a,b]×K

sup
J∈RM

◇
∥J∥=1

fM(τ1,τ2,κ,J) > 0

◻
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Conclusions

Ikehata-Kang-Seo-Sheen Monotonicity yields
▸ fundamental relation between measurements and unknowns,
▸ convergent inclusion detection methods,
▸ rigorous regularizers for residuum-based methods,
▸ theoretical uniqueness and Lipschitz stability results.

Approach can be extended
▸ to partial boundary data, independently of dimension n ≥ 2,
▸ to stochastic settings,
▸ at least partially to closely related problems

(diffuse optical tomography, magnetostatics, inverse scattering,

eddy-current equations, p-Laplacian, fractional diffusion, . . . )
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