

Monotonicity methods for inverse coefficient problems

Bastian von Harrach

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

2018 Joint Meeting of the Korean Mathematical Society and the German Mathematical Society COEX, Seoul, Korea, October 3–6, 2018.

Calderón problem

Can we recover $\sigma \in L^\infty_+(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{u}) = 0, \quad \boldsymbol{x} \in \boldsymbol{\Omega} \subset \mathbb{R}^d \qquad (1)$$

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

 $\Lambda(\sigma): L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$

where *u* solves (1) with $\sigma \partial_v u |_{\partial \Omega} = g$.

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Application: Electrical impedance tomography

- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject

Generic approaches for inverting $\sigma \mapsto \Lambda(\sigma)$

► Penalty-based regularization: Minimize Tikhonov functional $\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \min!$

 σ_0 : Initial guess or known reference state (e.g. exhaled state)

Deep learning based methods:

Given training data $\{(\sigma_n, \Lambda(\sigma_n)) : n = 1, ..., N\}$ minimize

$$\sum_{n=1}^{N} \|\sigma_n - f(\Lambda(\sigma_n))\|^2 \to \min!$$

over all functions $f \in \mathbb{DL}$ described by DL-network.

Advantages: Very flexible, additional data/unknowns easily added Disadvantages: Almost no rigorous theory (convergence, resolution, ...)

Is there any specific problem structure that we can use to derive convergent algorithms?

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \leq \sigma_1 \implies \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)

$$\int_{\Omega} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\boldsymbol{\sigma}_0) - \Lambda(\boldsymbol{\sigma}_1)) g \ge \int_{\Omega} \frac{\boldsymbol{\sigma}_0}{\boldsymbol{\sigma}_1} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_0) |\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\boldsymbol{\sigma}_0 \nabla u_0) = 0, \quad \boldsymbol{\sigma}_0 \partial_{\boldsymbol{v}} u_0|_{\partial \Omega} = g.$$

The monotonicity method for inclusion detection in EIT

Sample inclusion detection problem (for ease of presentation)

- σ₀ = 1
- $\sigma = 1 + \chi_D$
- *D* open, $\overline{D} \subseteq \Omega$, $\Omega \setminus \overline{D}$ connected

All of the following also holds for

- σ_0 pcw. analytic and known,
- $\sigma = \sigma_0 + \kappa \chi_D$ with $\kappa \in L^{\infty}_+(D)$,
- in any dimension $n \ge 2$,
- for partial boundary data on open subset $\Gamma \subseteq \partial \Omega$.

Monotonicity method

Sample inclusion detection problem

• $\sigma_0 = 1, \ \sigma = 1 + \chi_D, \quad D \text{ open}, \quad \overline{D} \subseteq \Omega, \quad \Omega \smallsetminus \overline{D} \text{ connected}$

Monotonicity

 $\, \bullet \, \tau \leq \sigma \quad \Longrightarrow \quad \Lambda(\tau) \geq \Lambda(\sigma)$

Monotonicity-based inclusion detection (Tamburrino/Rubinacci 2002):

$$B \subseteq D \implies 1 + \chi_B \leq \sigma \implies \Lambda(1 + \chi_B) \geq \Lambda(\sigma)$$

Algorithm:

- Mark all balls *B* with $\Lambda(1 + \chi_B) \ge \Lambda(\sigma)$
- Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?

Monotonicity method (for simple test example)

Theorem (H./Ullrich, 2013)

$$B \subseteq D \iff \Lambda(1+\chi_B) \ge \Lambda(\sigma).$$

For faster implementation:

$$B \subseteq D \iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma).$$

Shape can be reconstructed by linearized monotonicity tests.

Idea of proof: Combine monotonicity inequality:

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$
with localized potentials *(H., 2008)*:

$$\int_{D_1} \left| \nabla u_0^{(k)} \right|^2 \, \mathrm{d}x \to \infty \quad \text{and} \quad \int_{D_2} \left| \nabla u_0^{(k)} \right|^2 \, \mathrm{d}x \to 0.$$

Monotonicity-based regularization

For real data: Monotonicity for regularizing residuum-based methods

- Rigorous convergence of reconstructed shape (H./Mach, 2016)
- Comparison with heuristic standard for tank data (H./Mach, 2018)

monoton.-regularized

- EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
- EIDORS standard solver: heuristic linearized method with Tikhonov regularization
- Dataset: iirc_data_2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

using interpolated data on active electrodes (H., Inverse Problems 2015)

Monotonicity-based Uniqueness and Lipschitz-stability

Uniqueness

Monotonicity & localized potentials yield uniqueness results:

▶ Non-linear Calderón problem: (Kohn/Vogelius 1985, H./Seo 2010) If $\sigma_1 \in L^{\infty}_+(\Omega)$ fulfills (UCP) and $\sigma_2 - \sigma_1$ is pcw. analytic then

 $\Lambda(\sigma_1) - \Lambda(\sigma_2)$ implies $\sigma_1 = \sigma_2$.

Linearized Calderón problem: (H./Seo 2010) If $\sigma_1 \in L^{\infty}_+(\Omega)$ fulfills (UCP) and $\kappa \in L^{\infty}(\Omega)$ is pcw. analytic then

$$\Lambda'(\sigma_1)\kappa = 0$$
 implies $\kappa = 0$.

Linearized & discretized Calderón problem: (Lechleiter/Rieder 2008) With enough electrodes, the linearized Calderón problem with CEM is uniquely solvable in fin.-dim. subspaces of pcw. analytic functions (e.g., pcw. polynomials of fixed degree on fixed partition).

Nonlinear Calderón problem with electrode measurements

Current-to-Voltage operator

$$R_M(\sigma): \mathbb{R}^M_\diamond \to \mathbb{R}^M_\diamond, \quad (J_1, \dots, J_M) \mapsto (U_1, \dots, U_M).$$

What constraints on σ can make the inverse problem $R_M(\sigma) \mapsto \sigma$ well-posed?

Uniqueness and Lipschitz-stability for fixed resolution

Assumptions:

- Increasing number of electrodes fulfilling Hyvönen conditions
- *F*: finite-dimensional subset of pcw.-analytic functions
 (e.g., pcw. constant on fixed a-priori known partition)
- Known background conductivity: $\exists U$ nbr.hood of $\partial \Omega$, $\sigma_0 \in C^{\infty}$, so that $\sigma|_U = \sigma_0|_U$ for all $\sigma \in \mathcal{F}$
- A-prior known bounds

$$\mathcal{F}_{[a,b]} \coloneqq \{ \sigma \in \mathcal{F} : a \le \sigma(x) \le b \text{ for all } x \in \Omega \}$$

Theorem. (H, submitted) $\exists N \in \mathbb{N}, c > 0$:

$$\|R_M(\sigma_1)-R_M(\sigma_2)\|_{\mathcal{L}(\mathbb{R}^M_\diamond)} \ge c \|\sigma_1-\sigma_2\|_{L^\infty(\Omega)} \quad \forall \sigma_1,\sigma_2 \in \mathcal{F}_{[a,b]}, M \ge N.$$

Proof (main ideas)

Monotonicity (H/Ullrich, 2015)

$$\langle (R'(\sigma_2)(\sigma_1 - \sigma_2)) J, J \rangle_M = \int_{\Omega} (\sigma_2 - \sigma_1) |\nabla u_{\sigma_2}^{(J)}|^2 dx \leq \langle (R_M(\sigma_1) - R_M(\sigma_2)) J, J \rangle_M.$$

→ Lower bound on Lipschitz stability

$$\|R_M(\sigma_1) - R_M(\sigma_2)\| \geq \|\sigma_1 - \sigma_2\| \inf_{\substack{(\tau_1, \tau_2, \kappa) \\ \in \mathcal{F}_{[a,b]} \times \mathcal{F}_{[a,b]} \times \mathcal{K} \\ \|J\| = 1}} \sup_{J \in \mathbb{R}_{\phi}^{\wedge} \\ \|J\| = 1}} f_M(\tau_1, \tau_2, \kappa, J),$$

 $f_M(\tau_1,\tau_2,\kappa,J) \coloneqq \max\left\{\left(\left(R'_M(\tau_1)\kappa\right)J,J\right),-\left(\left(R'_M(\tau_2)\kappa\right)J,J\right)\right\},\right.$

Relation to NtD-operators, localized potentials & compactness

$$\inf_{\substack{(\tau_1,\tau_2,\kappa)\\ \in \mathcal{F}_{[a,b]} \times \mathcal{K} \\ \|J\| = 1}} \sup_{\substack{J \in \mathbb{R}^{\mathcal{A}}_{\circ} \\ \|J\| = 1}} f_{\mathcal{M}}(\tau_1,\tau_2,\kappa,J) > 0$$

Conclusions

Ikehata-Kang-Seo-Sheen Monotonicity yields

- fundamental relation between measurements and unknowns,
- convergent inclusion detection methods,
- rigorous regularizers for residuum-based methods,
- theoretical uniqueness and Lipschitz stability results.

Approach can be extended

- to partial boundary data, independently of dimension $n \ge 2$,
- to stochastic settings,
- at least partially to closely related problems (diffuse optical tomography, magnetostatics, inverse scattering, eddy-current equations, p-Laplacian, fractional diffusion, ...)