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Scattering in a bounded domain

▸ Excite time-harmonic pressure wave in a bounded domain
▸ Aim: Detect defects/anomalies from scattering response
▸ Applications: Acoustic/EM tomography, non-destructive testing
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Helmholtz equation

▸ Time-harmonic wave in bounded Lipschitz domain Ω ⊂Rn (n ≥ 2)

(∆+k2q)u = 0 in Ω (1)

(k > 0: non-resonant wavenumber, q ∈ L∞(Ω): sound speed,

u ∈ H1(Ω): acoustic pressure)

▸ Idealized boundary mesurements: Neumann-to-Dirichlet map

Λ(q) ∶ L2(Σ) → L2(Σ), g↦ u∣Σ,

where u solves (1) with ∂νu∣∂Ω = { g on Σ,
0 else.

(Σ ⊆ ∂Ω: open boundary part)

Can we recover q from Λ(q)?
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Inversion methods

▸ Linearization (Born / single scattering) & Iteration
▸ generic, popular, but no convergence theory

▸ Linear Sampling Methods / Factorization Methods
(Scattering: Colton, Kirsch, Cakoni, Haddar, Arens, Lechleiter, Griesmaier, . . .
EIT: Hanke, Brühl, Hyvönen, H., Seo, . . . )

▸ rigorous for exact data, yields uniqueness results
▸ non-intuitive criterion (range/infinity tests)
▸ no convergence theory for noisy data, needs definiteness

▸ Monotonicity Method (for EIT)
(Tamburrino, Rubinacci, H., Ullrich, Mach, Garde, . . . )

▸ rigorous theory (based on FM), yields uniqueness results
▸ simple, convergent for noisy data, can treat indefinite case
▸ can be combined with linearization approach

This talk: Extend monotonicity method to Helmholtz equation
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Monotonicity Method (for simple test case in EIT)

▸ EIT: Detect σ ∈ L∞+ (Ω) in ∇⋅(σ∇u) = 0 from NtD Λ(σ)
▸ Inclusion detection: σ = 1+χD, D open, Ω∖D connected

▸ Monotonicity:

σ1 ≤ σ2 Ô⇒ Λ(σ1) ≥Λ(σ2)

(i.e., Λ(σ1)−Λ(σ2) has no negative eigenvalues)

▸ Monotonicity for inclusion detection:
(„Ô⇒”: Tamburrino/Rubinacci 2002, „⇐Ô” & Linearization: H./Ullrich 2013)

B ⊆D ⇐⇒ Λ(1+χB) ≥Λ(1+χD)
⇐⇒ Λ(1)+ 1

2 Λ
′(1)χB ≥Λ(1+χD)

Inclusion can be found by testing several small balls B
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Monotonicity Method for Helmholtz (simple version)

▸ Helmholtz: Detect q ∈ L∞(Ω) in (∆+k2q)u = 0 from NtD Λ(q)
▸ Scatterer detection: q = 1+χD, D open, Ω∖D connected
▸ Monotonicity:

q1 ≤ q2 Ô⇒ Λ(q1) ≤fin Λ(q2)

(i.e., Λ(σ2)−Λ(σ1) has only finitely many negative eigenvalues)

▸ Monotonicity for inverse scattering:

B ⊆D ⇐⇒ Λ(1+χB) ≤fin Λ(1+χD)
⇐⇒ Λ(1)+Λ

′(1)χB ≤fin Λ(1+χD)

Scatterer can be found by testing several small balls B

Next slides: Full results under general assumptions
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Monotonicity for Helmholtz

Theorem. (H./Pohjola/Salo, submitted)

Let q1,q2 ∈ L∞(Ω), k > 0 no resonance. Then

q1 ≤ q2 implies Λ(q1) ≤d(q2) Λ(q2),

(i.e., Λ(σ2)−Λ(σ1) has less than d(q2) negative eigenvalues)

▸ d(q2)=no. of positive Neumann EVs of ∆+k2q (always finite)

Larger sound speed leads to larger NtD-measurements
(in the sense of a modified Loewner order)
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Local uniqueness for Helmholtz

Theorem. (H./Pohjola/Salo, submitted) Let

▸ q1,q2 ∈ L∞(Ω), k > 0 no resonance,
▸ O ⊆Ω rel. open set connected to Σ with q1∣O ≤ q2∣O.

Then
q1∣O /≡ q2∣O implies Λ(q1) /≥fin Λ(q2).

Deviation in sound speed can be detected
(from eigenvalues in NtD difference)
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Scatterer detection (definite case)

Λ(1): NtD for homogeneous sound spped
Λ(q): NtD for unknown sound speed (q ∈ L∞(Ω), k > 0 no resonance)

D ⊆Ω: unknown scatterer (open, Ω∖D connected)

TB: test operator for open B ⊆Ω (∫Σ
gTBh ∶= ∫B k2ug

1uh
1dx)

Theorem. (H./Pohjola/Salo, submitted)

Let 1 ≤ qmin ≤ q(x) ≤ qmax for all x ∈D (a.e.), then

B ⊆D implies αTB ≤d(qmax) Λ(q)−Λ(1) for all α ≤ qmin−1,

B /⊆D implies αTB /≤fin Λ(q)−Λ(1) for all α > 0.

(Similar result holds for qmin ≤ q(x) ≤ qmax < 1)

Scatterer can be localized by monotonicity tests
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Remarks and Extensions

▸ Monotonicity tests require no forward solutions (only for q0 ≡ 1).

▸ Tests can be easily regularized (↝ convergence for noisy data)

▸ Extensions possible for background sound speed q0 /≡ 1
▸ Extensions possible for Ω∖D not connected

(using concept of inner and outer support)

▸ Extension possible for indefinite case (by shrinking large test domain)

▸ Extension to far-field scattering: (Griesmaier/H., submitted)
kappa=2, alpha=1
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Proofs (main ideas): Well-posedness

▸ Standard variational formulation: u ∈H1(Ω) solves

(∆+k2q)u = 0 in Ω, ∂νu∣∂Ω = { g on Σ,
0 else,

if and only if

b(u,v) ∶= ∫
Ω

(∇u ⋅∇v−k2quv)dx = ∫
Σ

gv∣Σds

▸ b(⋅, ⋅) is coercive plus compact depending analytically on k ∈C
▸ Analytic Fredholm theory ↝ Unique solvability

(except for discrete set of resonance frequencies)
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Proofs (main ideas): Monotonicity

▸ From the variational formulation one obtains

∫
Σ

g(Λ(q2)−Λ(q1))g ds+∫
Ω

k2(q1−q2)∣u(g)1 ∣
2 dx

= ∫
Ω

(∣∇(u(g)2 −u(g)1 )∣
2
−k2q2∣u(g)2 −u(g)1 ∣

2) dx.

▸ Right hand side is coercive plus compact

↝ Right hand side is non-negative is space of finite codimension

↝ Monotonicity inequality

∫
Σ

g(Λ(q2)−Λ(q1))g ds ≥fin ∫
Ω

k2(q2−q1)∣u(g)1 ∣
2 dx

▸ Converse monotonicity by controlling u(g)1 ∣D on subset D ⊂Ω
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Proofs (main ideas): Localized potentials

Localized potentials: Control u(g)∣D on subset D ⊆Ω

▸ Neumann-to-Solution-operator:

LD ∶ L2(Σ) → L2(D), g↦ u(g)∣D

▸ L∗D ∶ L2(D) → L2(Σ): Source-to-Dirichlet-operator
▸ Unique continuation: For ”different” subsets B,D ⊆Ω

R(L∗D)∩R(L∗B) = 0

▸ Duality argument: ∃gn ∈ L2(Σ):

∥u(gn)∣D∥ = ∥LDgn∥ →∞ and ∥u(gn)∣B∥ = ∥LBgn∥ → 0.

▸ dimR(L∗D),dimR(L∗B) =∞
↝ gn can be chosen from space with finite codimension
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Summary

Modified Loewner order for compact selfadjoint operators:

A ≤d B ∶⇐⇒ B−A has less than d negative EVs

Monotonicity and converse monotonicity for Helmholtz equation:
▸ Larger sound speed implies larger NtD measurements.
▸ Larger NtD implies that there is no boundary neighbourhood

where sound speed is smaller.

Monotonicity approach yields
▸ Local uniqueness result for Helmholtz equation
▸ Simple but rigorously convergent scatterer detection algorithm
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