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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulpq) : usolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Application: Electrical impedance tomography ONIERSITAT

» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Inversion of ¢ — A(0)? ENERSITAT

Generic solvers for non-linear inverse problems:
» Linearize and regularize:

Ameas A(G) N A(GO) +A’(O-O)(G - 60)-
op: Initial guess or reference state (e.g. exhaled state)

~ Linear inverse problem for o
(Solve using linear regularization method, repeat for Newton-type algorithm.)

» Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

HAmeas—/\(O')||2+Ot HG—G()”2 — min!

Advantages of generic optimization-based solvers:
» Very flexible, additional data/unknowns easily incorporated
» Problem-specific regularization can be applied
(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of ¢ — A(0)?

Problems with generic optimization-based solvers
» High computational cost

» Evaluations of A(-) and A’(-) require PDE solutions.
» PDE solutions too expensive for real-time imaging

» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)
» Convergence against true solution for exact meas. Ameas?
(in the limit of infinite computation time)
» Convergence against true solution for noisy meas. A2.,?
(in the limit of § — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

Is there any specific problem structure that we can use to derive
convergent algorithms?
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Monotonicity UNIVERSITAT

For two conductivities o6y, 07 € L= (Q):

ocp<or = A(op)>A(oy)

This follows from (Kang/Seo/Sheen 1997, Ikehata 1998)
[ (er=alvuol> [ g(a(on)-Ao)g> [ 2 (01-00)[Tuol
Q oQ Q Oy
for all solutions uq of
V- (G()Vu()) =0, Goavuobg =g.

Converse monotonicity relation can be shown by controlling |Vuo|*.
(Localized Potentials: H., Inverse Probl. Imaging 2008)
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Monotonicity method

Sample inclusion detection problem (for ease of presentation)
» op=1
»o1=1+xp
» D open, D c Q, QD connected

All of the following also holds for
» Op pcw. analytic and known,
» 01 =0p+ Kxp With Kk € L°(D),
» in any dimension n > 2,
» for partial boundary data on open subset I" € Q.
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Monotonicity method UNIVERSITAT

H./Ullrich, SIAM J. Math. Anal. 2013:

BeD <« A(1)+%A’(1)x3 > A(0)

v

Yields theoretical uniqueness result

» Simple to implement, no PDE solutions

» Similar comput. cost as single Newton (linearization) step
» Rigorously detects unknown shape for exact data

» Convergence for noisy data AS... = A(c) - A(1):

5 1 it A (1) > AS s - 1
R(Ameas: 9,B) '_{ 0 else.

Then R(ASas,8,B) = 1iff BC D.

meas>
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Monotonicity method

Quantitative, pixel-based variant of monotonicity method:
> Pixel partition Q = U;" | P
» Quantitative monotonicity tests
Bi € [0,00] max. values s.t. BrA'(1)xp, > A(c) - A(1)
B €[0,00] max. values s.t. BOA'(1)xp, 2 Al ons — 81

“Raise conductivity in each pixel until monotonicity test fails.”

» By theory of monotonicity method:

[ . ﬁk =0 ifP ¢ D
B¢ — Bx and B fulfills { B it P.cD

i\
=

Plotting B,f shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

» Monotonicity method rigorously converges for 6 =0 ...

» ... but the heuristic standard linearized method works much
better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization

» Standard linearized methods for EIT: Minimize
|A' (1)K = (A(0) = A(1)) | + et i[> > min!
Choice of norms heuristic. No convergence theory!
» Monotonicity-based regularization: Minimize
[A"(1)x~ (A(6) = A(1))] £ — min!

under the constraint k|p, = const., 0 < k|p, <min{3, B}

(|| || 7 Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)
» There exists unique minimizer k and

P, Csuppk <= P.Csupp(c-1).

» Minimizer fulfills & = Y7 min{1/2, B} 2,
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Monotonicity-based regularization

For noisy measurements AS... ~ A(c) - A(1):
» Use regularized monotonicity tests
B €[0,00] max. values s.t. BOA'(1)xp, 2 Al ons — 81
(8 > 0: noise level in £(L2(3Q))-norm)
» Minimize
HA,(I )K5 _ArieasH F = min!

under the constraint x°|p, = const., 0 < k°|p, < min{%,ﬁf}.

Theorem (H./Mach, Inverse Problems 2016)

» There exist minimizers k% and k% — & for § — 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

» Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example UNIVERSITAT

FRANKFURT AM MAIN

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)
Monotonicity-regularization vs. community standard
(H./Mach, Trends Math., to appear)

> EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
> EIDORS standard solver: linearized method with Tikhonov regularization

> Dataset: iirc_.data-2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

> using interpolated data on active electrodes (H., Inverse Problems 2015)
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Stochastic Calderon problem

Deterministic Calderon Problem: Can we recover ¢ from NtD
A(0): L2(dQ) > L3(9Q), g+ ulo,

where u solves V- (oVu) =0 in Q with 6dyu|yq = g?

» Stochastic Calderon problem:
Can we recover E(o) from E(A(o))?

» Stochastic inclusion detection in hom. background (op = 1):
Can we recover supp(lE(c)-1) fromTE(A(0))?

» (Possible) Application: Biomedical anomaly detection from
temporally averaged measurements.
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NtD-operator is of finite expectation ONIERSITAT

Theorem (Barth/H./Hyvénen/Mustonen, Inverse Problems 2017)
lf 6,671 e L'(W,L>°(Q)), W probability space, then
> A(o) e L'(W,LF(Q)),
» E(A(0)) is well-defined,
» E(A(0)): L2(9Q) - L2(dQ) is compact and self-adjoint.

Proof.

» A(0): W — L(L2(9Q)) is concatenation of strongly meas.
function and continuous function and thus strongly measurable.

» Integrability bound on A( o) follows from monotonicity inequality.
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Detecting stochastic inclusions

Theorem (Barth/H./Hyvénen/Mustonen, Inverse Problems 2017)
If

o= 1 in Q\ D,
| op(x,@) inD,

v

op:Q— L (D), W probability space,
> op,op' L'(W,LY (D)),
Ja>0: E(op)>l+a, and E(op))!'>1+a,

v

Then D is uniqu. determined by Monoton. Meth. applied to IE(A(c))

(and also by the similar Factorization Method).

Stochastic uncertainty in o behaves like deterministic uncertainty in
[E(c™")"" E(0)]-
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Monotonicity for stochastic inclusions UNIVERSITAT

Main idea of the proof. Monotonicity for stochastic inclusions:

For deterministic oy and stochastic o

| (@) -a)vuol dr> [ g(A(c0)-B(A(0))g ds

2/963(651—153(6‘1))|Vu0|2 dx.

In particular,

oo<E(c)andoy<E(c) — A(0y)>E(A(0))
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Example

%1073 x10°3

- N W A~ g
- N W A~ O

» Background conductivity oy =1
» Inclusions conductivity uniformly distributed in [0.5,3.5]

E(op) >E(cp') '~ 1.54> 1 =0y

» Images show result of Factorization Method applied to E(o)
(Left Image: no noise, Right Image: 0.1% noise)
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Conclusions N o i
Inverse coeff. problems such as EIT are highly ill-posed & non-linear.

» Convergence of generic solvers unclear.

» Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield
» theoretical uniqueness results,
» convergent inclusion detection methods,
» rigorous regularizers for residuum-based methods.

Approach can be extended

v

to partial boundary data, independently of dimension n > 2,
» to stochastic settings,

v

to other linear elliptic problems (diffuse optical tomography, magnetostatics)

v

at least partially to closely related problems

(eddy-current equations, p-Laplacian, inverse scattering, fractional diffusion)

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



