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of α in left and right bases determined by the positions of the receiver array, the
source and the scatterer.
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Maxwell equations., Journal de mathématiques pures et appliquées, 80 (2001), pp. 769–814,
doi:10.1016/S0021-7824(01)01217-X.

[2] P. Bardsley and F. Guevara Vasquez, Kirchhoff migration without phases, Inverse Problems,
32 (2016), p. 105006, doi:10.1088/0266-5611/32/10/105006

[3] M. Cassier and F. Guevara Vasquez, Imaging Polarizable dipoles, ArXiv:1703.03544.
[4] L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press, 2012.

The monotonicity method for inverse scattering

Bastian Harrach

(joint work with Mikko Salo, Valter Pohjola)

We consider the problem of determining the support of an unknown scatterer in a
bounded domain from knowledge of the associated Neumann-Dirichlet-operator for
the Helmholtz equation. We show that the support can be uniquely reconstructed
from operator comparisons in the sense of operator definiteness up to finitely
many eigenvalues. This extends previous works on coercive equations such as EIT
[4] to coercive-plus-compact equations, and yields a constructive characterization
of scatterers, that is numerically stable in the sense that is allows convergent
implementations for noisy data. The results that we present herein have to be
considered work-in-progress, and we only sketch the main ideas for a sample case.

The setting. Let

(1) Λ0 : L2(∂Ω)→ L2(∂Ω), g �→ u
(g)
0 |∂Ω

be the Neumann-Dirichlet-operator for the homogeneous Helmholtz equation in a

bounded domain Ω ⊆ �n, n ≥ 2, with smooth boundary ∂Ω, i.e. u
(g)
0 ∈ H1(Ω)

solves

(2) Δu
(g)
0 (x) + k2u

(g)
0 (x) = 0 in Ω, ∂νu

(g)
0 |∂Ω = g.

We also consider the case where the domain contains an open scatterer D ⊂ Ω
with D ⊂ Ω and Ω \ D is connected. We assume that the refractive index in
D is real-valued and strictly larger than the background, so that the scattering
coefficient is given by 1+q(x), where q ∈ L∞(Ω) is assumed to fulfill that q(x) = 0
(a.e.) outside D and

0 < qmin ≤ q(x) ≤ qmax for all x ∈ D (a.e.)

Then the scattering field u(g) ∈ H1(Ω) solves

(3) Δu(g)
q (x) + k2(1 + q(x))u(g)

q (x) = 0 in Ω, ∂νu
(g)
q |∂Ω = g,
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and the corresponding Neumann-Dirichlet-operator is denoted by

(4) Λq : L2(∂Ω)→ L2(∂Ω), g �→ u(g)
q |∂Ω.

We assume that k2 is not a resonance, neither for the homogeneous nor for the
inhomogeneous problem, so that both, (2) and (4), are uniquely solvable for all
g ∈ L2(∂Ω) and the Neumann-Dirichlet-operators are well-defined.

The main result. Our main result is a constructive proof that D is uniquely
determined from comparing Λq with Λ0. For an open set B (e.g., a small ball), we
introduce the self-adjoint compact test operator

TB : L2(∂Ω)→ L2(∂Ω),

∫
∂Ω

gTBh :=

∫
B

k2u
(g)
0 u

(h)
0 .

Theorem 1. There exists a number dmax ∈ � such that

(a) if B ⊆ D then

αTB ≤dmax
Λ(q)− Λ(0) for all α ≤ qmin.

(b) if B 	⊆ D then, for all α > 0, Λ(q)− Λ(0)− αTB has infinitely many negative
eigenvalues,

where αTB ≤dmax
Λ(q)−Λ(0) denotes that the difference Λ(q)−Λ(0)−αTB has at

most dmax negative eigenvalues. The number dmax only depends on qmax and can
be calculated without knowledge of D.

Proof of the main result. The proof of theorem 1 follows the approach in
[4] (see also [2, 3, 5] for uniqueness proofs based on this approach) and combines
a monotonicity estimate with the idea of localized potentials from [1].

Lemma 2 (Monotonicity). There exists a number dmax ∈ �0 such that∫
∂Ω

g (Λ(q)− Λ(0)) g ≥dmax

∫
Ω

k2q|u(g)
0 |2

Proof. From the variational formulations of (1) and (3) one obtains that∫
∂Ω

g (Λ(q)− Λ(0)) g −
∫
Ω

k2q|u(g)
0 |2

≥
∫
Ω

(∣∣∣∇(u(g)
q − u

(g)
0 )

∣∣∣2 − k2(1 + qmax)|u(g)
q − u

(g)
0 |2

)

= 〈(I − (1 + k2(1 + qmax))K
)
(u(g)

q − u
(g)
0 ), u(g)

q − u
(g)
0 〉H1(Ω),

where I is the identity on H1(Ω) and

K : H1(Ω)→ H1(Ω), 〈Ku, v〉H1(Ω) :=

∫
Ω

uv,

is compact. The assertion now follows from the fact that I − (1 + k2(1 + qmax))K
can only have a finite number dmax ∈ �0 of negative eigenvalues. �
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Lemma 3 (Localized potentials). If B ⊆ Ω is open and B 	⊆ D then for each
finite dimensional subspace V ⊆ L2(∂Ω),

(5) ∃(gk)k∈� ⊆ V ⊥ :

∫
B

k2|u(gk)
0 |2 →∞ but

∫
D

k2|u(gk)
0 |2 → 0.

Moreover, for this sequence also
∫
D k2|u(gk)

q |2 → 0.

Proof. By shrinking B, we can assume w.l.o.g. that B ⊆ Ω, B ∩ D = ∅ and that
Ω \ (B ∪D) is connected. We then argue by contradiction, and assume that (5) is
not true. Then, with the Neumann-to-Solution operators

LD : L2(∂Ω)→ L2(D), g �→ u
(g)
0 |D,

LB : L2(∂Ω)→ L2(B), g �→ u
(g)
0 |B,

there would exist a constant C > 0 such that

‖LBg‖ ≤ C‖LDg‖ for all g ∈ V ⊥.

This would yield that there exists a self-adjoint compact F with dim(F ) <∞ and

‖LBg‖2 ≤ C2‖LDg‖2 + ‖Fg‖2 for all g ∈ L2(∂Ω).

Using a powerful relation between norms of operator evaluations and the ranges
of their adjoints [1, Lemma 2.5]), this would imply that

(6) R(L∗
B) ⊆ R(L∗

D) +R(F ).

However, the adjoints L∗
D and L∗

B can be characterized as Source-to-Dirichlet
operators, and using a unique continuation argument as in part (b) of the proof
of theorem 3.6 in [4], one can show that

R(L∗
D) ∩R(L∗

B) = {0},
and that R(L∗

D),R(L∗
B) ⊆ L2(∂Ω) are both dense and thus infinite-dimensional.

By a dimension argument, it thus follows that (6) cannot be true. This proves (5).

Defining L̃D : L2(∂Ω) → L2(D), g �→ u
(g)
q |D and using that q = 0 out-

side of D, one can show that R(L̃∗
D) = R(L∗

D). Hence, the additional assertion∫
D
k2|u(gk)

q |2 → 0 follows by the same arguments. �

Proof of theorem 1. If B ⊆ D and α ≤ qmin then lemma 2 yields that

α

∫
∂Ω

gTBg = α

∫
B

k2|u(g)
0 |2 ≤

∫
Ω

k2q|u(g)
0 |2 ≤dmax

∫
∂Ω

g (Λ(q)− Λ(0)) g,

which shows (a). Interchanging uq and u0 in lemma 2, it also follows that∫
∂Ω

g (Λ(q)− Λ(0)) g ≤dmax

∫
Ω

k2q|u(g)
q |2

Hence, if B 	⊆ D, but Λ(q)− Λ(0) ≥fin αTB, then this would imply that

α

∫
B

k2|u(g)
0 |2 ≤

∫
Ω

k2q|u(g)
q |2 =

∫
D

k2qmax|u(g)
q |2
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holds for all g ∈ V ⊥ with some finite-dimensional space V ⊂ L2(∂Ω). But this
contradicts lemma 3 and thus proves (b). �
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Stekloff Eigenvalues in Inverse Scattering

Shixu Meng

(joint work with Fioralba Cakoni, David Colton, Peter Monk)

We consider a problem in non-destructive testing in which small changes in the
(possibly complex valued) refractive index n(x) of an inhomogeneous medium of
compact support are to be determined from changes in measured far field data
due to incident plane waves.

It is known that transmission eigenvalues can be determined from the measured
scattering data and carry information about the refractive index of non-absorbing
media [3]. However the use of transmission eigenvalues in nondestructive testing
has two major drawbacks. The first drawback is that in general only the first
transmission eigenvalue can be accurately determined from the measured data [2]
and the determination of this eigenvalue means that the frequency of the inter-
rogating wave must be varied in a frequency range around this eigenvalue. In
particular, multi-frequency data must be used in an a priori determined frequency
range. This also requires the medium to be non-dispersive. The second drawback
is that only real transmission eigenvalues can be conveniently determined from
the measured scattering data which means that transmission eigenvalues cannot
be used for the non-destructive testing of inhomogeneous absorbing media.

To overcome these difficulties, we consider a modified far field operator F whose
kernel is the difference of the measured far field pattern due to the scattering
object and the far field pattern of an auxiliary scattering problem with the Stekloff
boundary condition imposed on the boundary of a domain B where B is either
the support of the scattering object or a ball containing the scattering object in
its interior. It is shown that F can be used to determine the Stekloff eigenvalues
corresponding to B where if B 	= D the refractive index is set equal to one in
B \D. For fixed k, λ := λ(k) ∈ C is called a Stekloff eigenvalue if there exists a


