

Detecting stochastic inclusions in electrical impedance tomography

Bastian von Harrach

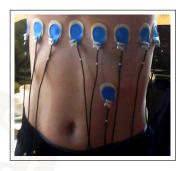
harrach@math.uni-frankfurt.de

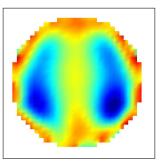
(joint work with A. Barth, N. Hyvönen and L. Mustonen)

Institute of Mathematics, Goethe University Frankfurt, Germany

The International Conference on Sensing and Imaging ICSI 2017
June 5-7, 2017
Chengdu, China

Electrical impedance tomography (EIT)





- Apply electric currents on subject's boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject.

Mathematical Model (deterministic)

Electrical potential u(x) solves

$$\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in D$$

 $D \subset \mathbb{R}^n$: imaged body, $n \ge 2$

 $\sigma(x)$: conductivity

u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{\nu} u(x)|_{\partial D}$: applied electric current

 $u(x)|_{\partial D}$: measured boundary voltage (potential)

Calderón problem (deterministic)

Can we recover $\sigma \in L^{\infty}_{+}(D)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla u) = 0, \quad x \in D \tag{1}$$

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial D}, \sigma \partial_{\nu} u|_{\partial D}) : u \text{ solves (1)} \}$$
?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma): L^2_{\diamond}(\partial D) \to L^2_{\diamond}(\partial D), \quad g \mapsto u|_{\partial D},$$

where *u* solves (1) with $\sigma \partial_{\nu} u|_{\partial D} = g$.

Inclusion detection in EIT

σ: Actual (unknown) conductivity

 σ_0 : Initial guess or reference state (e.g. exhaled state)

• supp $(\sigma - \sigma_0)$ often relevant in practice

Inclusion detection problem (aka shape reconstruction or anomaly detection)

Can we recover supp
$$(\sigma - \sigma_0)$$
 from $\Lambda(\sigma)$, $\Lambda(\sigma_0)$?

- Generic approach: parametrize $\operatorname{supp}(\sigma-\sigma_0)$ (e.g., Level-Set-Methods)
- Problems:
 - PDE solutions required in each iteration
 - convergence unclear

Linearization and inclusion detection

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ , σ , σ_0 pcw. analytic.

$$\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial D}\kappa = \operatorname{supp}_{\partial D}(\sigma - \sigma_0)$$

 $\operatorname{supp}_{\partial D}$: outer support (= supp + parts unreachable from ∂D)

- Inclusion detection is essentially a linear problem.
- Fast, rigorous and globally convergent inclusion detection methods are possible.
 - Next slides: Monotonicity method.

Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \le \sigma_1 \implies \Lambda(\sigma_0) \ge \Lambda(\sigma_1)$$

This follows from

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\sigma_0 \nabla u_0) = 0, \quad \sigma_0 \partial_{\nu} u_0|_{\partial \Omega} = g.$$

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Monotonicity based imaging

Monotonicity:

$$\tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

- Idea: Simulate $\Lambda(\tau)$ for test cond. τ and compare with $\Lambda(\sigma)$. (Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)
- Inclusion detection: For $\sigma = 1 + \chi_A$ with unknown anomaly A, use $\tau = 1 + \chi_B$, with small ball B.

$$B \subseteq A \implies \tau \le \sigma \implies \Lambda(\tau) \ge \Lambda(\sigma)$$

- ▶ Algorithm: Mark all balls B with $\Lambda(1 + \chi_B) \ge \Lambda(\sigma)$
- Result: upper bound of anomaly A.

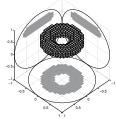
Only an upper bound? Converse monotonicity relation?

Monotonicity method

GOETHE UNIVERSITÄT

Theorem (H./Ullrich, SIAM J. Math. Anal. 2013) $D \setminus \overline{A}$ connected. $\sigma = 1 + \chi_A$.

$$B \subseteq A \iff \Lambda(1 + \chi_B) \ge \Lambda(\sigma).$$



For faster implementation:

$$B \subseteq A \iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma).$$

Inclusion can be reconstructed by linearized monotonicity tests.

- → Fast, rigorous, allows globally convergent implementation
- Ideas of proof evolved from the similar Factorization Method
 (For EIT: Arridge, Betcke, Brühl, Chaulet, Choi, Hakula, Hanke, H., Holder, Hyvönen,
 Kirsch, Lechleiter, Nachman, Päivärinta, Pursiainen, Schappel, Schmitt, Seo, Teirilä,
 ...)

Calderón problem

Deterministic Calderón Problem: Can we recover σ from NtD

$$\Lambda(\sigma): L^2_{\diamond}(\partial D) \to L^2_{\diamond}(\partial D), \quad g \mapsto u|_{\partial D},$$

where
$$u$$
 solves $\nabla \cdot (\sigma \nabla u) = 0$ with $\sigma \partial_{\nu} u|_{\partial D} = g$?

Stochastic Calderón problem:

Can we recover
$$\mathbb{E}(\sigma)$$
 from $\mathbb{E}(\Lambda(\sigma))$?

- Stochastic inclusion detection in hom. background ($\sigma_0 = 1$):

 Can we recover $\operatorname{supp}(\mathbb{E}(\sigma) 1)$ from $\mathbb{E}(\Lambda(\sigma))$?
- (Possible) Application: Biomedical anomaly detection from temporally averaged measurements.

NtD-operator is of finite expectation

Theorem (Barth/H./Hyvönen/Mustonen, submitted)

If $\sigma, \sigma^{-1} \in L^1(\Omega, L^\infty_+(D))$ then

- $\Lambda(\sigma) \in L^1(\Omega, L^\infty_+(D)),$
- $\mathbb{E}(\Lambda(\sigma))$ is well-defined,
- ▶ $\mathbb{E}(\Lambda(\sigma)): L^2_{\diamond}(\partial D) \to L^2_{\diamond}(\partial D)$ is compact and self-adjoint.

Proof.

- $\Lambda(\sigma): \Omega \to \mathcal{L}(L^2_{\diamond}(\partial D))$ is concatenation of strongly meas. function and continuous function and thus strongly measurable.
- Integrability bound on $\Lambda(\sigma)$ follows from monotonicity inequality.

Detecting stochastic inclusions

Theorem (Barth/H./Hyvönen/Mustonen, submitted)

Consider a domain with with a stochastic inclusion A,

• $\sigma_A: \Omega \to L^\infty_+(A)$, Ω probability space,

$$\bullet \ \sigma_A, \sigma_A^{-1} \in L^1(\Omega, L_+^{\infty}(A))$$

If there exists $\alpha > 0$ with

$$\mathbb{E}(\sigma_A) > 1 + \alpha$$
 and $\mathbb{E}(\sigma_A^{-1})^{-1} > 1 + \alpha$,

then $\mathbb{E}(\Lambda(\sigma))$ uniquely determines A.

Applying FM or MM to $\mathbb{E}(\Lambda(\sigma))$ recovers the true inclusion A.

Monotonicity for stochastic inclusions

Main idea of the proof. Monotonicity for stochastic inclusions:

For deterministic σ_0 and stochastic σ :

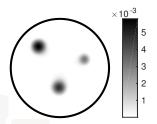
$$\int_{D} (\mathbb{E}(\sigma) - \sigma_{0}) |\nabla u_{0}|^{2} dx \ge \int_{\partial D} g(\Lambda(\sigma_{0}) - \mathbb{E}(\Lambda(\sigma))) g ds$$

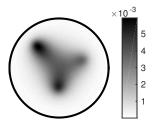
$$\ge \int_{D} \sigma_{0}^{2} (\sigma_{0}^{-1} - \mathbb{E}(\sigma^{-1})) |\nabla u_{0}|^{2} dx.$$

In particular,

$$\sigma_0 \leq \mathbb{E}(\sigma)$$
 and $\sigma_0 \leq \mathbb{E}(\sigma^{-1})^{-1} \implies \Lambda(\sigma_0) \geq \mathbb{E}(\Lambda(\sigma))$

Example





- Background conductivity σ₀ = 1
- Inclusions conductivity uniformly distributed in [0.5,3.5]

$$\mathbb{E}(\sigma_A) \geq \mathbb{E}(\sigma_A^{-1})^{-1} \approx 1.54 > 1 = \sigma_0$$

Images show result of Factorization Method applied to $\mathbb{E}(\sigma)$ (Left Image: no noise, Right Image: 0.1% noise)

Open problems / Outlook

Stochastic background?

- Roughly speaking (for monotonicity-based algorithms): stoch. $\sigma(\omega) \Longleftrightarrow$ determ. uncertainty in $[\mathbb{E}(\sigma^{-1})^{-1}, \mathbb{E}(\sigma)]$.
- Stochastic anomaly in stochastic background can be detected if deterministic anomaly in deterministic (unknown!) background can be detected.
- Problem may be treatable with worst-case tests
 (Resolution guarantees for deterministic case: H., Ullrich, IEEE TMI 2015)

Open problems / Outlook

Stochastic anomaly shape?

- ▶ Problem formulation requires $\sigma \in L^1(\Omega, L^{\infty}_+(D))$.
- $\sigma: \Omega \to L^\infty_+(D)$ must be essentially separably valued. (Banach-space valued integration, Lebesgue-Bochner spaces)
 - Conductivity $\sigma(\omega) = 1 + \chi_{B_{r(\omega)}}$ where anomaly $B_{r(\omega)}$ is ball of random radius $r(\omega)$ (e.g. uniformly distibuted in $[r_{\min}, r_{\max}]$)

$$\|\sigma(\omega_1) - \sigma(\omega_2)\|_{L^{\infty}} = 1$$
 for all $\omega_1 \neq \omega_2$.

 $\rightarrow \sigma: \Omega \rightarrow L^{\infty}_{+}(D)$ is not essentially separably valued.

Different functional analytic setting?

In EIT, stochastic inclusions in a deterministic background

- can be detected by deterministic Factorization or Monotonicity Method applied to the measurement's expectation value,
- if, both, $\mathbb{E}(\sigma_A)$ and $\mathbb{E}(\sigma_A^{-1})^{-1}$ are larger than bg conductivity (or both are smaller than background conductivity)

Roughly speaking,

stochastic conductivity uncertainty in σ is analogous to deterministic uncertainty in $[\mathbb{E}(\sigma^{-1})^{-1}, \mathbb{E}(\sigma)]$

Open Problems / Outlook:

- Stochastic inclusions in stochastic backgrounds may be treatable by resolution guarantees.
- Unclear how to treat stochastic inclusion shapes in this functional analytic setting.