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Electrical impedance tomography (EIT) ONIERSITAT

~ -
’ A
4 %
l |
o~
s e

» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Mathematical Model (deterministic) ONIERSITAT

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeD

D cR": imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

odyu(x)|yp: applied electric current
u(x)|yp: measured boundary voltage (potential)
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Calderon problem (deterministic) ONIERSITAT

Can we recover ¢ € L°(D) in
V-(oVu)=0, xeD (1)
from all possible Dirichlet and Neumann boundary values

{(u|yp,00vulyp) : wusolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3 (9D) — L (9D), g+~ ulap,

where u solves (1) with cdyulyp = g.
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Inclusion detection in EIT

o: Actual (unknown) conductivity
op: Initial guess or reference state (e.g. exhaled state)

» supp(o — 0p) often relevant in practice

Inclusion detection problem (aka shape reconstruction or anomaly detection)

Can we recover supp(o — op) from A(c), A(oy) ?

» Generic approach: parametrize supp(o — 0p) (e.g., Level-Set-Methods)
> Problems:

» PDE solutions required in each iteration
» convergence unclear
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Linearization and inclusion detection

Theorem (H./Seo, SIAM J. Math. Anal. 2010)
Let k, o, 0p pcw. analytic.

AN(op)k=A(c)-A(cy) = suppypk =suppyp(0—0p)

supp,p: outer support ( = supp + parts unreachable from dD)

~ Inclusion detection is essentially a linear problem.

~ Fast, rigorous and globally convergent inclusion detection
methods are possible.

» Next slides: Monotonicity method.
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Monotonicity FRANKY D2 M M ATy

For two conductivities oy, 01 € L= (Q):

cp<or = A(op)>A(01)

This follows from
[ (o=l > [ g(Alon)-Ae))g> [ 2 (01-00)[Tuol
Q o0 Q 0]
for all solutions u of
V-(0oVug) =0, 0pdvuglyq = &-

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)
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Monotonicity based imaging

» Monotonicity:

1<0c = A(7r)>A(0)

v

Idea: Simulate A(7) for test cond. T and compare with A(o).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)

» Inclusion detection: For o = 1 + x4 with unknown anomaly A,
use T =1+ xp, with small ball B.

BcA — 1<0 =— A(1)2A(0)

v

Algorithm: Mark all balls B with A(1+ xz) > A(0)
» Result: upper bound of anomaly A.

Only an upper bound? Converse monotonicity relation?

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography



‘ TINTVERSITAT

Monotonicity method

Theorem (H./ulirich, SIAM J. Math. Anal. 2013)
D~ A connected. 6 =1+ 4.

BcA <— A(l+yxp)>A(0).

For faster implementation:

BcA <« A(l)+3A (1)xs>A(0).

Inclusion can be reconstructed by linearized monotonicity tests.

~ Fast, rigorous, allows globally convergent implementation

» ldeas of proof evolved from the similar Factorization Method
(For EIT: Arridge, Betcke, Briihl, Chaulet, Choi, Hakula, Hanke, H., Holder, Hyvénen,

Kirsch, Lechleiter, Nachman, Pdivérinta, Pursiainen, Schappel, Schmitt, Seo, Teiril4,

)
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Calderdn problem

Deterministic Calderon Problem: Can we recover ¢ from NtD
A(0): L3(dD) - L3(dD), g ulsp,

where u solves V- (oVu) =0 with 6dyulyp = g?

» Stochastic Calderon problem:
Can we recover E(o) from E(A(o))?

» Stochastic inclusion detection in hom. background (op = 1):
Can we recover supp(lE(c)-1) fromTE(A(0))?

» (Possible) Application: Biomedical anomaly detection from
temporally averaged measurements.
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NtD-operator is of finite expectation ONIERSITAT

Theorem (Barth/H./Hyvénen/Mustonen, submitted)
If 6,067 e L'(Q,L°(D)) then
© A(6) eLI(Q,LE(D)),
» E(A(0)) is well-defined,
» E(A(0)): L2(dD) - L% (dD) is compact and self-adjoint.

Proof.

» A(0): Q— L(L2(9D)) is concatenation of strongly meas.
function and continuous function and thus strongly measurable.

» Integrability bound on A( o) follows from monotonicity inequality.
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Detecting stochastic inclusions

Theorem (Barth/H./Hyvénen/Mustonen, submitted)
Consider a domain with with a stochastic inclusion A,

Lo in D\A,
| oa(x,@) inA,

» 04:Q—~LP(A), Q probability space,
- oy, 05 €LN(Q,L(A))
If there exists o > 0 with
E(cs)>1+a and E(o;)'>1+a,

then E(A(o)) uniquely determines A.
Applying FM or MM to IE(A(0)) recovers the true inclusion A.
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Monotonicity for stochastic inclusions UNIVERSITAT

Main idea of the proof. Monotonicity for stochastic inclusions:

For deterministic oy and stochastic o

[(®(e) -0 Vil dv> [ o(A(on)~E(A(0)))g ds

Z/Dcrg(c()‘l—lE(G_l))|Vuo|2 dx.

In particular,

oo<E(c)andoy<E(c) — A(0y)>E(A(0))
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Example

%1073 x10°3

- N W A~ g
- N W A~ O

» Background conductivity oy =1
» Inclusions conductivity uniformly distributed in [0.5,3.5]

E(ox) >E(c;') '~ 1.54> 1 =0

» Images show result of Factorization Method applied to (o)
(Left Image: no noise, Right Image: 0.1% noise)
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Open problems / Outlook N o i

Stochastic background?
» Roughly speaking (for monotonicity-based algorithms):
stoch. 6(®) <= determ. uncertainty in [E(c~') ", E(0)].
» Stochastic anomaly in stochastic background can be detected if

deterministic anomaly in deterministic (unknown!) background
can be detected.

» Problem may be treatable with worst-case tests
(Resolution guarantees for deterministic case: H., Ullrich, IEEE TMI 2015)
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Open problems / Outlook N o i

Stochastic anomaly shape?

>

~r

Problem formulation requires ¢ € L' (Q,L%°(D)).
o : Q- L (D) must be essentially separably valued.
(Banach-space valued integration, Lebesgue-Bochner spaces)
Conductivity o (@) =1+ xs,,,
where anomaly B, is ball of random radius r(®)
(e.g. uniformly distibuted in [rmin, rmax])

|lo(w)-o(a)|~=1 foral @+ ws.
~ 0: Q- L(D) is not essentially separably valued.
Different functional analytic setting?

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography



GOETHE @
Conclusions HI\\II\P/UF{RSIEAT
In EIT, stochastic inclusions in a deterministic background

» can be detected by deterministic Factorization or Monotonicity
Method applied to the measurement’s expectation value,

» if, both, E(oa) and E(o; ') ™! are larger than bg conductivity
(or both are smaller than background conductivity)
Roughly speaking,
» stochastic conductivity uncertainty in ¢ is analogous to
deterministic uncertainty in [E(c™')™!, E(0)]
Open Problems / Outlook:

» Stochastic inclusions in stochastic backgrounds may be
treatable by resolution guarantees.

» Unclear how to treat stochastic inclusion shapes in this
functional analytic setting.
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