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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Application: Electrical impedance tomography

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Inversion of σ ↦Λ(σ)?

Generic solvers for non-linear inverse problems:
▸ Linearize and regularize:

Λmeas ≈Λ(σ) ≈Λ(σ0)+Λ
′(σ0)(σ −σ0).

σ0: Initial guess or reference state (e.g. exhaled state)

↝ Linear inverse problem for σ

(Solve using linear regularization method, repeat for Newton-type algorithm.)

▸ Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

∥Λmeas−Λ(σ)∥2+α ∥σ −σ0∥2→min!

Advantages of generic optimization-based solvers:
▸ Very flexible, additional data/unknowns easily incorporated
▸ Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of σ ↦Λ(σ)?

Problems with generic optimization-based solvers
▸ High computational cost

▸ Evaluations of Λ(⋅) and Λ
′(⋅) require PDE solutions.

▸ PDE solutions too expensive for real-time imaging

▸ Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

▸ Convergence against true solution for exact meas. Λmeas?
(in the limit of infinite computation time)

▸ Convergence against true solution for noisy meas. Λ
δ
meas?

(in the limit of δ → 0 and infinite computation time)
▸ Global convergence? Resolution estimates for realistic noise?

Is there any specific problem structure that we can use to derive
convergent algorithms?
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Monotonicity

For two conductivities σ0,σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ≥Λ(σ1)

This follows from ((Kang/Seo/Sheen 1997, Ikehata 1998)

∫
Ω

(σ1−σ0)∣∇u0∣2 ≥ ∫
∂Ω

g(Λ(σ0)−Λ(σ1))g ≥ ∫
Ω

σ0

σ1
(σ1−σ0)∣∇u0∣2

for all solutions u0 of

∇⋅(σ0∇u0) = 0, σ0∂νu0∣∂Ω = g.

Converse monotonicity relation can be shown by controlling ∣∇u0∣2.
(Localized Potentials: H., 2008)
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Monotonicity method

Sample inclusion detection problem (for ease of presentation)

▸ σ0 = 1
▸ σ1 = 1+χD

▸ D open, D ⊆Ω, Ω∖D connected

All of the following also holds for
▸ σ0 pcw. analytic and known,
▸ σ1 = σ0+κχD with κ ∈ L∞+ (D),
▸ in any dimension n ≥ 2,
▸ for partial boundary data on open subset Γ ⊆ ∂Ω.

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



Monotonicity method

H./Ullrich, SIMA 2013:

B ⊆D ⇐⇒ Λ(1)+ 1
2

Λ
′(1)χB ≥Λ(σ)

▸ Yields theoretical uniqueness result
▸ Simple to implement, no PDE solutions
▸ Similar comput. cost as single Newton (linearization) step
▸ Rigorously detects unknown shape for exact data
▸ Convergence for noisy data Λ

δ
meas→Λ(σ)−Λ(1):

R(Λ
δ

meas,δ ,B) ∶= { 1 if 1
2 Λ

′(1)χB ≥Λ
δ
meas−δ I

0 else.

Then R(Λ
δ
meas,δ ,B)→ 1 iff B ⊆D.

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



Monotonicity method

Quantitative, pixel-based variant of monotonicity method:

▸ Pixel partition Ω =⋃m
k=1 Pk

▸ Quantitative monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ
′(1)χPk ≥Λ(σ)−Λ(1)

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I

“Raise conductivity in each pixel until monotonicity test fails.”

▸ By theory of monotonicity method:

β
δ

k → βk and βk fulfills { βk = 0 if Pk /⊆D
βk ≥ 1

2 if Pk ⊆D

Plotting β
δ

k shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

▸ Monotonicity method rigorously converges for δ → 0 . . .
▸ . . . but the heuristic standard linearized method works much

better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization

▸ Standard linearized methods for EIT: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥2+α ∥κ∥2→min!

Choice of norms heuristic. No convergence theory!

▸ Monotonicity-based regularization: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥F→min!

under the constraint κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{1
2 ,βk}.

(∥ ⋅∥F : Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

▸ There exists unique minimizer κ̂ and

Pk ⊆ supp κ̂ ⇐⇒ Pk ⊆ supp(σ −1).
▸ Minimizer fulfills κ̂ =∑m

k=1 min{1/2,βk}χPk
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Monotonicity-based regularization

For noisy measurements Λ
δ
meas ≈Λ(σ)−Λ(1):

▸ Use regularized monotonicity tests

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I
(δ > 0: noise level in L(L2

◇
(∂Ω))-norm)

▸ Minimize
∥Λ

′(1)κ
δ −Λ

δ

meas∥F→min!

under the constraint κ
δ ∣Pk = const., 0 ≤ κ

δ ∣Pk ≤min{1
2 ,β

δ

k }.

Theorem (H./Mach, Inverse Problems 2016)

▸ There exist minimizers κ
δ and κ

δ → κ̂ for δ → 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

▸ Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom data example

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)

Monotonicity-regularization vs. community standard
(H./Mach, submitted)

▸ EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
▸ EIDORS standard solver: linearized method with Tikhonov regularization

▸ Dataset: iirc data 2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

▸ using interpolated data on active electrodes (H., Inverse Problems 2015)
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Stochastic Calderón problem

Deterministic Calderón Problem: Can we recover σ from NtD

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves ∇⋅(σ∇u) = 0 in Ω with σ∂νu∣∂Ω = g?

▸ Stochastic Calderón problem:

Can we recover E(σ) from E(Λ(σ))?

▸ Stochastic inclusion detection in hom. background (σ0 = 1):

Can we recover supp(E(σ)−1) from E(Λ(σ))?

▸ (Possible) Application: Biomedical anomaly detection from
temporally averaged measurements.
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NtD-operator is of finite expectation

Theorem (Barth/H./Hyvönen/Mustonen, submitted)

If σ ,σ−1 ∈ L1(W,L∞+ (Ω)), W probability space, then
▸ Λ(σ) ∈ L1(W,L∞+ (Ω)),
▸ E(Λ(σ)) is well-defined,
▸ E(Λ(σ)) ∶ L2

◇(∂Ω)→ L2
◇(∂Ω) is compact and self-adjoint.

Proof.
▸ Λ(σ) ∶ W →L(L2

◇(∂Ω)) is concatenation of strongly meas.
function and continuous function and thus strongly measurable.

▸ Integrability bound on Λ(σ) follows from monotonicity inequality.

B. Harrach: Monotonicity-based regularization of inverse coefficient problems



Detecting stochastic inclusions

Theorem (Barth/H./Hyvönen/Mustonen, submitted)

If

▸ σ = { 1 in Ω∖D,
σD(x,ω) in D,

▸ σD ∶Ω→ L∞+ (D), W probability space,
▸ σD,σ

−1
D ∈ L1(W,L∞+ (D)),

▸ ∃α > 0 ∶ E(σD) > 1+α, and E(σ
−1
D )−1 > 1+α,

Then D is uniqu. determined by Monoton. Meth. applied to E(Λ(σ))
(and also by the similar Factorization Method).

Stochastic uncertainty in σ behaves like deterministic uncertainty in
[E(σ

−1)−1,E(σ)].
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Monotonicity for stochastic inclusions

Main idea of the proof. Monotonicity for stochastic inclusions:

For deterministic σ0 and stochastic σ :

∫
Ω

(E(σ)−σ0))∣∇u0∣2 dx ≥ ∫
∂Ω

g(Λ(σ0)−E(Λ(σ)))g ds

≥ ∫
Ω

σ
2
0 (σ

−1
0 −E(σ

−1))∣∇u0∣2 dx.

In particular,

σ0 ≤E(σ) and σ0 ≤E(σ
−1)−1 Ô⇒ Λ(σ0) ≥E(Λ(σ))
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Example
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▸ Background conductivity σ0 = 1
▸ Inclusions conductivity uniformly distributed in [0.5,3.5]

E(σD) ≥E(σ
−1
D )−1 ≈ 1.54 > 1 = σ0

▸ Images show result of Factorization Method applied to E(σ)
(Left Image: no noise, Right Image: 0.1% noise)
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Conclusions

Inverse coeff. problems such as EIT are highly ill-posed & non-linear.
▸ Convergence of generic solvers unclear.
▸ Often heuristic regularization without theor. justification is used.

Monotonicity and localized potentials yield
▸ theoretical uniqueness results,
▸ convergent inclusion detection methods,
▸ rigorous regularizers for residuum-based methods.

Approach can be extended
▸ to partial boundary data, independently of dimension n ≥ 2,
▸ to stochastic settings,
▸ to other linear elliptic problems (diffuse optical tomography, magnetostatics)

▸ at least partially to closely related problems
(eddy-current equations, p-Laplacian, inverse scattering)
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