

## Towards combining optimization-based techniques with shape reconstruction methods in EIT

Bastian von Harrach

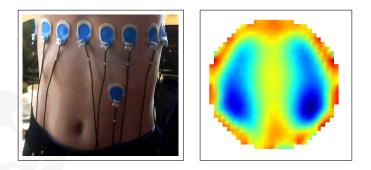
http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

Oberwolfach workshop on Theory and Numerics of Inverse Scattering Problems Oberwolfach, Germany, September 18–24, 2016.



#### Electrical impedance tomography (EIT)



- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject.



## Electrical potential u(x) solves

 $\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in \Omega$ 

- $\Omega \subset \mathbb{R}^n$ : imaged body,  $n \ge 2$ 
  - $\sigma(x)$ : conductivity
  - u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{v} u(x)|_{\partial \Omega}$ : applied electric current  $u(x)|_{\partial \Omega}$ : measured boundary voltage (potential)



#### Calderón problem

Can we recover  $\sigma \in L^{\infty}_{+}(\Omega)$  in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{u}) = 0, \quad \boldsymbol{x} \in \boldsymbol{\Omega}$$
 (1)

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$ 

Equivalent: Recover  $\sigma$  from Neumann-to-Dirichlet-Operator

 $\Lambda(\sigma): L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$ 

where *u* solves (1) with  $\sigma \partial_v u |_{\partial \Omega} = g$ .



## Inversion of $\sigma \mapsto \Lambda(\sigma)$ ?

Generic optimization-based solvers for non-linear inverse problems:

Linearize and regularize:

$$\Lambda_{\text{meas}} \approx \Lambda(\sigma) \approx \Lambda(\sigma_0) + \Lambda'(\sigma_0)(\sigma - \sigma_0).$$

 $\sigma_0$ : Initial guess or reference state (e.g. exhaled state)

 $\sim$  Linear inverse problem for  $\sigma$  (Solve using linear regularization method, repeat for Newton-type algorithm.)

Regularize and linearize:

E.g., minimize non-linear Tikhonov functional

$$\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \min!$$

Advantages of generic optimization-based solvers:

- Very flexible, additional data/unknowns easily incorporated
- Problem-specific regularization can be applied (e.g., total variation penalization, stochastic priors, etc.)



## Inversion of $\sigma \mapsto \Lambda(\sigma)$ ?

#### Problems with generic optimization-based solvers

- High computational cost
  - Evaluations of  $\Lambda(\cdot)$  and  $\Lambda'(\cdot)$  require PDE solutions.
  - PDE solutions too expensive for real-time imaging
- Convergence unclear

(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

- Convergence against true solution for exact meas. Λ<sub>meas</sub>? (in the limit of infinite computation time)
- Convergence against true solution for noisy meas.  $\Lambda_{\text{meas}}^{\delta}$ ? (in the limit of  $\delta \rightarrow 0$  and infinite computation time)
- Global convergence? Resolution estimates for realistic noise?
- Influence of modelling errors
  - Evaluations of Λ(·) affected by large modelling errors (boundary geometry, electrode position, etc.)



#### Linearized methods

Popular approach in practice:

- Measure difference data  $\Lambda_{\text{meas}} \approx \Lambda(\sigma) \Lambda(\sigma_0)$ . (e.g.  $\Lambda(\sigma_0)$  measurement at exhaled state)
- Calculate  $\sigma \sigma_0$  from  $\Lambda_{meas}$  by single linearization step.

Standard linearized method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve  $\Lambda'(\sigma_0)\kappa = \Lambda_{\text{meas}}$ , then  $\kappa \approx \sigma - \sigma_0$ .

After discretization and regularization:

$$\|\mathbf{S}\boldsymbol{\kappa} - \mathbf{V}\|^2 + \alpha \|\boldsymbol{\kappa}\|^2 \rightarrow \min!$$

S: sensitivity matrix, V: vector of EIT measurements.

Theorem (H./Seo, SIMA 2010) Let  $\kappa$ ,  $\sigma$ ,  $\sigma_0$  pcw. analytic.

 $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$ 

 $\operatorname{supp}_{\partial\Omega}$ : outer support ( =  $\operatorname{supp}$  + parts unreachable from  $\partial\Omega$ )

- Linearized EIT equation contains correct shape information. (in the continuous version for noise-free measurements on infinitely many electrodes)
- Practitioners use heuristic regularization of linearized EIT equ. (in the discretized version for noisy measurements on finitely many electrodes)

Can we minimize linearized data-fit residual with a regularization that rigorously guarantees convergence of reconstructed shapes?

Inclusion detection

Sample inclusion detection problem (for ease of presentation)

- σ<sub>0</sub> = 1
- $\sigma_1 = 1 + \chi_D$
- D open,  $\overline{D} \subseteq \Omega$ ,  $\Omega \setminus \overline{D}$  connected

All of the following also holds for

- σ<sub>0</sub> pcw. analytic,
- $\sigma_1 = \sigma_0 + \kappa \chi_D$  with  $\kappa \in L^{\infty}_+(D)$ ,
- in any dimension  $n \ge 2$ ,
- for partial boundary data on open subset  $\Gamma \subseteq \partial \Omega$ .

as long as  $\sigma_0$  and bounds on  $\kappa$  are known.



#### Rigorous inclusion detection in EIT

Linear Sampling Method (Scattering: Colton/Kirsch 1996):

$$z \notin D \implies I(z) = \infty$$

- Rigorously detects subset of D for exact data.
- Factorization Method (Scattering: Kirsch 1998, EIT: Brühl/Hanke 1999):

$$z \notin D \iff I(z) = \infty.$$

- Rigorously detects D for exact data.
- No convergence result for noisy data  $\Lambda_{\text{meas}}^{\delta} \rightarrow \Lambda(\sigma) \Lambda(1)$ .
- (Linearized) Monotonicity Method
  - Tamburrino/Rubinacci 02:

$$B \subseteq D \implies \Lambda(1 + \chi_B) \ge \Lambda(\sigma).$$

• H./Ullrich, SIMA 2013:

$$B \subseteq D \iff \Lambda(1 + \chi_B) \ge \Lambda(\sigma)$$
$$\iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma)$$



#### Monotonicity Method

H./Ullrich, SIMA 2013:

$$B \subseteq D \iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma)$$

- Simple to implement, no PDE solutions
- Same computational cost as FM or single linearization step
- Rigorously detects unknown shape for exact data
- Convergence for noisy data  $\Lambda_{\text{meas}}^{\delta} \rightarrow \Lambda(\sigma) \Lambda(1)$ :

$$R(\Lambda_{\text{meas}}^{\delta}, \delta, B) \coloneqq \begin{cases} 1 & \text{if } \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda_{\text{meas}}^{\delta} - \delta I \\ 0 & \text{else.} \end{cases}$$

Then  $R(\Lambda_{\text{meas}}^{\delta}, \delta, B) \to 1$  iff  $B \subseteq D$ .

B. Harrach: Towards combining optimization-based techniques with shape reconstruction methods in EIT



#### Monotonicity method

Quantitative, pixel-based variant of monotonicity method:

- Pixel partition  $\Omega = \bigcup_{k=1}^{m} P_k$
- Quantitative monotonicity tests

 $\beta_k \in [0, \infty]$  max. values s.t.  $\beta_k \Lambda'(1) \chi_{P_k} \ge \Lambda(\sigma) - \Lambda(1)$  $\beta_k^{\delta} \in [0, \infty]$  max. values s.t.  $\beta_k^{\delta} \Lambda'(1) \chi_{P_k} \ge \Lambda_{\text{meas}}^{\delta} - \delta I$ 

"Raise conductivity in each pixel until monotonicity test fails."

By theory of monotonicity method:

$$\beta_k^{\delta} \to \beta_k$$
 and  $\beta_k$  fulfills  $\begin{cases} \beta_k = 0 & \text{if } P_k \notin D \\ \beta_k \ge \frac{1}{2} & \text{if } P_k \subseteq D \end{cases}$ 

Plotting  $\beta_k^{\delta}$  shows true inclusions up to pixel partition.

#### Realistic example (32 electrodes, 1% noise)





- Monotonicity method rigorously converges for  $\delta \rightarrow 0 \dots$
- better for realistic scenarios.

# Can we improve the monotonicity method without loosing convergence?



#### Monotonicity-based regularization

► Standard linearized methods for EIT: Minimize  $\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|^2 + \alpha \|\kappa\|^2 \to \min!$ 

Choice of norms heuristic. No convergence theory!

Monotonicity-based regularization: Minimize

 $\|\Lambda'(1)\kappa - (\Lambda(\sigma) - \Lambda(1))\|_{\mathsf{F}} \to \min!$ 

under the constraint  $\kappa|_{P_k} = \text{const.}, \ 0 \le \kappa|_{P_k} \le \min\{\frac{1}{2}, \beta_k\}.$ 

 $(\|\cdot\|_F)$ : Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, submitted)

• There exists unique minimizer  $\hat{\kappa}$  and

$$P_k \subseteq \operatorname{supp} \hat{\kappa} \iff P_k \subseteq \operatorname{supp}(\sigma - 1).$$

• Minimizer fulfills  $\hat{\kappa} = \sum_{k=1}^{m} \min\{1/2, \beta_k\} \chi_{P_k}$ 



#### Monotonicity-based regularization

For noisy measurements  $\Lambda_{\text{meas}}^{\delta} \approx \Lambda(\sigma) - \Lambda(1)$ :

Use regularized monotonicity tests

 $\beta_k^{\delta} \in [0, \infty] \text{ max. values s.t. } \beta_k^{\delta} \Lambda'(1) \chi_{P_k} \ge \Lambda_{\text{meas}}^{\delta} - \delta I$   $(\delta > 0: \text{ noise level in } \mathcal{L}(L^2_{\diamond}(\partial \Omega)) \text{-norm})$ 

Minimize

$$\|\Lambda'(1)\kappa^{\delta} - \Lambda_{\text{meas}}^{\delta}\|_{\mathsf{F}} \to \min!$$

under the constraint  $\kappa^{\delta}|_{P_k} = \text{const.}, \ 0 \le \kappa^{\delta}|_{P_k} \le \min\{\frac{1}{2}, \beta_k^{\delta}\}.$ 

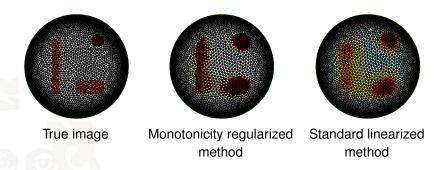
Theorem (H./Mach, submitted)

• There exist minimizers  $\kappa^{\delta}$  and  $\kappa^{\delta} \rightarrow \hat{\kappa}$  for  $\delta \rightarrow 0$ .

#### Monotonicity-regularized solutions converge against correct shape.

#### Realistic example (32 electrodes, 1% noise)

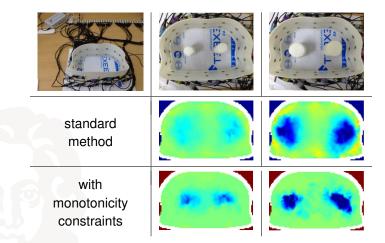




 Monotonicity regularized method rigorously converges and is up to par with (outperforms?) heuristic standard linearized method.



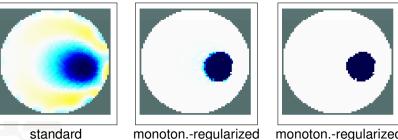
#### Phantom experiment



Enhancing standard methods by monotonicity-based constraints (Zhou/H./Seo, 2016)



#### Benchmark example



monoton.-regularized (cvx package)

## (Matlab quadprog) (cvx pac Monotonicity-regularization vs. community standard (H./Mach)

EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)

- EIDORS standard solver: linearized method with Tikhonov regularization
- Dataset: iirc\_data\_2006 (Woo et al.): 2cm insulated inclusion in 20cm tank
  - using interpolated data on active electrodes (H., Inverse Problems 2015)



#### Conclusions

EIT is a highly ill-posed, non-linear inverse problem.

- Convergence of generic solvers unclear.
- Practitioners use single linearization step with heuristic regularization and no theoretical justification.

Monotonicity-based regularization of linearized EIT equation

- uses that shape reconstr. in EIT is (essentially) a linear problem,
- yields solutions that rigorously converge against correct shape,
- combines rigorous theory of monotonicity method with practical robustness of residuum-based methods.

Approach (monotonicity + localized potentials) can be extended

- to partial boundary data, independently of dimension  $n \ge 2$
- to other linear elliptic problems (diffuse optical tomography, magnetostatics)
- at least partially to closely related problems

(eddy-current equations, p-Laplacian)