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Electrical impedance tomography (EIT) ONIERSITAT
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» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Mathematical Model UNIVERSITAT

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeQ

QcR" imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

odvu(x)|ya: applied electric current
u(x)|pq: measured boundary voltage (potential)
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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulyq) : wusolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Partial/local data UNIVERSITAT

Measurements on open part of boundary X c 9dQ
(0Q\ X is kept insulated.)

Recover o from
A(0): LZ(E) > L3 (2), g uls,
where u solves V- (o Vu) = 0 with

g onk,
O0yuls :{ 0 else.
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Uniqueness results FRANKY D2 M M ATy

» Measurements on complete boundary (full data):
Calderdn (1980), Druskin (1982+85), Kohn/Vogelius (1984+85), Sylvester/Uhlmann
(1987), Nachman (1996), Astala/Péivérinta (2006)

» Measurements on part of the boundary (local data):
Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007), Kenig/Sjéstrand/Uhlmann
(2007), H. (2008), Imanuvilov/Uhlmann/Yamamoto (2009+10), Kenig/Salo (2012+13)

Rough summary of known results:
» L* coefficients are uniquely determined from full data in 2D.
» In all cases, piecew.-anal. coefficients are uniquely determined.

» Sophisticated research on uniqueness for ~ C2-coefficients

(based on CGO-solutions for Schrédinger eq. —Au+qu =0, g = %).
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Inversion of 6 = A(0C) = Ameas? UNIVERSITAT

Generic solvers for non-linear inverse problems:
» Linearize and regularize:
Ameas = A(0) » A(0p) +A'(0p) (0 - 0p).
op: Initial guess or reference state (e.g. exhaled state)
~ Linear inverse problem for o
(Solve using linear regularization method, repeat for Newton-type algorithm.)
» Regularize and linearize:
E.g., minimize non-linear Tikhonov functional
| Ameas = A(0)||> + & |6 — 09| > = min!

Advantages of generic solvers:
» Very flexible, additional data/unknowns easily incorporated
» Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of 6 = A(0) = Ameas”

Problems with generic solvers

» High computational cost
(Evaluations of A(-) and A’(+) require PDE solutions)
» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

» Convergence against true solution for exact meas. Ameas?
(in the limit of infinite computation time)
» Convergence against true solution for noisy meas. Ageas?
(in the limit of 8 — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

D-bar method
» Convergent 2D-implementation for ¢ € C? and full bndry data

(Knudsen, Lassas, Mueller, Siltanen 2008)
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Linearization and shape reconstruction

Theorem (H./Seo, SIMA 2010)
Let k, o, 0p pcw. analytic.

A(op)k=A(c)-A(op) == suppyk =supps(0—0p)

suppy: outer support ( = supp + parts unreachable from X)

~ Linearized EIT equation contains correct shape information

Next slides: Idea of proof using monotonicity & localized potentials.

B. Harrach: Monotonicity-based methods for inverse coefficient problems



UNIVERSITAT

Monotonicity FRANKY D2 M M ATy

For two conductivities 6y, 01 € L (Q):

ocp<or = A(op)2A(oy)

This follows from
[ (or-alvuol > [s(a(or)-Ae)g> [ Z(01-00)Vuol
Q )y Q 0y

for all solutions uq of

onx,
V'(O'Qvuo) =0, O'oavuolag = { ((g) olse.

(e.g., Kang/Seo/Sheen 1997, lkehata 1998)
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Localized potentials FRANKY D2 M M ATy

Theorem (H., IPI 2008)
Let oy fulfill unique continuation principle (UCP),

DinDy=@, and Q- (D;uD;) be connected with X.

Then there exist solutions u(()k), k € N with

2
/ |Vu(()k) dx - o0 and f
Dy D,

|Vuo|? small |Vug|? small
|Vuol|? large s |V uol|? large s
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Proof 1/3 UNIVERSITAT

FRANKFURT AM MAIN

Virtual measurements:

Lp: L*(D)" > L2(Z), F ~ uls, with

[QGoVu-Vvdx=fQF-Vvdx VveH! (D).

By (UCP): If D nD, = @ and Q (D uD,) is connected with ¥, then

’R,(LD1 ) ﬁR(LDz) =0.

Sources on different domains yield different virtual measurements.
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Proof 2/3 I

Dual operator:

Ly : L2(X) - L*(D)", g Vuyl|p, with

g onk,

V-(Govu()) =0, G()avu()l):={ 0 else

Evaluating solutions on D is dual operation to virtual measurements.
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Functional analysis:
X,Y1,Y, reflexive Banach spaces, L; € L(Y1,X), L, € L(Y1,X).

R(Li)cR(L,) <= |Lix| < |Lix| VxeX'.

Here: R(Lp,) § R(Lp,) == [Vuolp, |2 # [ Vuolp, | 2-

If sources on different subdomains do not generate the same data,
then the respective evaluations are not bounded by each other.
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Proof of shape invariance under linearization

» Linearization: A’(cp)k =A(0)-A(0p)
» Monotonicity: For all "reference solutions* uy:

J (o= o0 1vuf ax
> [8(A(r)-A(0))g > [ 2 (o-00)|Tul’ ax.

=—/Eg(A'(Go)K)g=[QK|W0|2dX

» Use localized potentials to control |Vugl|?

~ suppy K = suppy (0 - 0p) o
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Linearization and shape reconstruction ONIERSITAT

Theorem (H./Seo, SIMA 2010)
Let k, o, 0y pcw. analytic.

A(op)k=A(0)-A(oy) = suppy K = suppy (0 — 0p)

suppy: outer support ( = supp + parts unreachable from X)

~ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, ... )
in a fast, rigorous and globally convergent way?
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Monotonicity based imaging

» Monotonicity:

1<0c = A(7r)>A(0)

v

Idea: Simulate A(7) for test cond. T and compare with A(o).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)

» Inclusion detection: For ¢ = 1 + yp with unknown D,
use T =1+ xp, with small ball B.

BcD — 1<0 =— A(1)>A(0)

v

Algorithm: Mark all balls B with A(1+ xz) > A(0)
» Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Monotonicity method (for simple test example) UNIVERSITAT

Theorem (H./ulirich, SIMA 2013)
QD connected. o =1+ yp.

BcD <« A(l1+yxp)>A(0).

For faster implementation:
BcD <« A(1)+3A(1)xs>A(0).

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

~» fast, rigorous, allows globally convergent implementation

B. Harrach: Monotonicity-based methods for inverse coefficient problems



corrne f4

UNIVERSITAT

Improving residuum-based methods
Let @\ D connected. 6 = 1+ xp.

> Pixel partition Q = U;" | P

» Monotonicity tests

By € [0,00] max. values s.t. BA'(1)xp, > A(0) - A(1)

» Monotonicity-constrained residuum minimization
[A(1)k-A(c)-A(1)| g — min!
suchthat klp, =const., 0< k|p, <min{}, B}

(|| || 7 Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, submitted)
» There exists unique minimizer x and
P.csuppk <= P.Csupp(o-1).
» Convergent regularization for noisy data, k¥ — K pointwise.
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Phantom experiment

LA

Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo)

monotonicity
constraints

4 V
standard £ . ‘
method i
with v N
i 1

B. Harrach: Monotonicity-based methods for inverse coefficient problems



corrne f4

UNIVERSITAT

Conclusions NLVERSITAT

EIT is a highly ill-posed, non-linear inverse problem.
» Convergence of generic solvers unclear.
» But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction
» allow fast, rigorous, globally convergent implementations.
» work in any dimensions n > 2, full or partial boundary data.
» can enhance standard residual-based methods.
» yield rigorous resolution guarantees for realistic settings.

Approach (monotonicity + localized potentials) can be extended
> to other linear elliptic problems (diffuse optical tomography, magnetostatics)
> at least partially to closely related problems

(eddy-current equations, p-Laplacian)
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