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Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Mathematical Model

Electrical potential u(x) solves

∇⋅(σ(x)∇u(x)) = 0 x ∈Ω

Ω ⊂Rn: imaged body, n ≥ 2
σ(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

σ∂νu(x)∣∂Ω: applied electric current
u(x)∣∂Ω: measured boundary voltage (potential)
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇⋅(σ∇u) = 0, x ∈Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω,σ∂νu∣∂Ω) ∶ u solves (1)}?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g.
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Inversion of σ ↦Λ(σ)?

Generic optimization-based solvers for non-linear inverse problems:
▸ Linearize and regularize:

Λmeas ≈Λ(σ) ≈Λ(σ0)+Λ
′(σ0)(σ −σ0).

σ0: Initial guess or reference state (e.g. exhaled state)

↝ Linear inverse problem for σ

(Solve using linear regularization method, repeat for Newton-type algorithm.)

▸ Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

∥Λmeas−Λ(σ)∥2+α ∥σ −σ0∥2→min!

Advantages of generic optimization-based solvers:
▸ Very flexible, additional data/unknowns easily incorporated
▸ Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of σ ↦Λ(σ)?

Problems with generic optimization-based solvers
▸ High computational cost

▸ Evaluations of Λ(⋅) and Λ
′(⋅) require PDE solutions.

▸ PDE solutions too expensive for real-time imaging

▸ Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

▸ Convergence against true solution for exact meas. Λmeas?
(in the limit of infinite computation time)

▸ Convergence against true solution for noisy meas. Λ
δ
meas?

(in the limit of δ → 0 and infinite computation time)
▸ Global convergence? Resolution estimates for realistic noise?

▸ Influence of modelling errors
▸ Evaluations of Λ(⋅) affected by large modelling errors

(boundary geometry, electrode position, etc.)
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Linearized methods

Popular approach in practice:
▸ Measure difference data Λmeas ≈Λ(σ)−Λ(σ0).

(e.g. Λ(σ0) measurement at exhaled state)

▸ Calculate σ −σ0 from Λmeas by single linearization step.

Standard linearized method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve Λ
′(σ0)κ =Λmeas, then κ ≈ σ −σ0.

After discretization and regularization:

∥Sκ −V∥2+α ∥κ∥2→min!

S: sensitivity matrix, V: vector of EIT measurements.
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Linearization and shape reconstruction

Theorem (H./Seo, SIMA 2010)

Let κ , σ , σ0 pcw. analytic.

Λ
′(σ0)κ =Λ(σ)−Λ(σ0) Ô⇒ supp∂Ωκ = supp∂Ω(σ −σ0)

supp
∂Ω

: outer support ( = supp + parts unreachable from ∂Ω)

▸ Linearized EIT equation contains correct shape information.
(in the continuous version for noise-free measurements on infinitely many electrodes)

▸ Practitioners use heuristic regularization of linearized EIT equ.
(in the discretized version for noisy measurements on finitely many electrodes)

Can we minimize linearized data-fit residual with a regularization that
rigorously guarantees convergence of reconstructed shapes?
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Inclusion detection

Sample inclusion detection problem (for ease of presentation)

▸ σ0 = 1
▸ σ1 = 1+χD

▸ D open, D ⊆Ω, Ω∖D connected

All of the following also holds for
▸ σ0 pcw. analytic,
▸ σ1 = σ0+κχD with κ ∈ L∞+ (D),
▸ in any dimension n ≥ 2,
▸ for partial boundary data on open subset Γ ⊆ ∂Ω,

as long as σ0 and bounds on κ are known.
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Rigorous inclusion detection in EIT

▸ Linear Sampling Method (Scattering: Colton/Kirsch 1996):
z /∈D Ô⇒ I(z) =∞

▸ Rigorously detects subset of D for exact data.

▸ Factorization Method (Scattering: Kirsch 1998, EIT: Brühl/Hanke 1999):
z /∈D ⇐⇒ I(z) =∞.

▸ Rigorously detects D for exact data.
▸ No convergence result for noisy data Λ

δ
meas→Λ(σ)−Λ(1).

▸ (Linearized) Monotonicity Method
▸ Tamburrino/Rubinacci 02:

B ⊆D Ô⇒ Λ(1+χB) ≥Λ(σ).
▸ H./Ullrich, SIMA 2013:

B ⊆D ⇐⇒ Λ(1+χB) ≥Λ(σ)

⇐⇒ Λ(1)+ 1
2

Λ
′(1)χB ≥Λ(σ).
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Monotonicity Method

H./Ullrich, SIMA 2013:

B ⊆D ⇐⇒ Λ(1)+ 1
2

Λ
′(1)χB ≥Λ(σ)

▸ Simple to implement, no PDE solutions
▸ Same computational cost as FM or single linearization step
▸ Rigorously detects unknown shape for exact data
▸ Convergence for noisy data Λ

δ
meas→Λ(σ)−Λ(1):

R(Λ
δ

meas,δ ,B) ∶= { 1 if 1
2 Λ

′(1)χB ≥Λ
δ
meas−δ I

0 else.

Then R(Λ
δ
meas,δ ,B)→ 1 iff B ⊆D.
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Monotonicity method

Quantitative, pixel-based variant of monotonicity method:

▸ Pixel partition Ω =⋃m
k=1 Pk

▸ Quantitative monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ
′(1)χPk ≥Λ(σ)−Λ(1)

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I

“Raise conductivity in each pixel until monotonicity test fails.”

▸ By theory of monotonicity method:

β
δ

k → βk and βk fulfills { βk = 0 if Pk /⊆D
βk ≥ 1

2 if Pk ⊆D

Plotting β
δ

k shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

▸ Monotonicity method rigorously converges for δ → 0 . . .
▸ . . . but the heuristic standard linearized method works much

better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization

▸ Standard linearized methods for EIT: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥2+α ∥κ∥2→min!

Choice of norms heuristic. No convergence theory!

▸ Monotonicity-based regularization: Minimize

∥Λ
′(1)κ −(Λ(σ)−Λ(1))∥F→min!

under the constraint κ ∣Pk = const., 0 ≤ κ ∣Pk ≤min{1
2 ,βk}.

(∥ ⋅∥F : Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)

▸ There exists unique minimizer κ̂ and

Pk ⊆ supp κ̂ ⇐⇒ Pk ⊆ supp(σ −1).
▸ Minimizer fulfills κ̂ =∑m

k=1 min{1/2,βk}χPk
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Monotonicity-based regularization

For noisy measurements Λ
δ
meas ≈Λ(σ)−Λ(1):

▸ Use regularized monotonicity tests

β
δ

k ∈ [0,∞] max. values s.t. β
δ

k Λ
′(1)χPk ≥Λ

δ

meas−δ I
(δ > 0: noise level in L(L2

◇
(∂Ω))-norm)

▸ Minimize
∥Λ

′(1)κ
δ −Λ

δ

meas∥F→min!

under the constraint κ
δ ∣Pk = const., 0 ≤ κ

δ ∣Pk ≤min{1
2 ,β

δ

k }.

Theorem (H./Mach, Inverse Problems 2016)

▸ There exist minimizers κ
δ and κ

δ → κ̂ for δ → 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

▸ Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom experiment

standard
method

with
monotonicity
constraints

Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, 2016)
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Benchmark example

standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)

Monotonicity-regularization vs. community standard
(H./Mach, submitted)

▸ EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
▸ EIDORS standard solver: linearized method with Tikhonov regularization

▸ Dataset: iirc data 2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

▸ using interpolated data on active electrodes (H., Inverse Problems 2015)
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Conclusions

EIT is a highly ill-posed, non-linear inverse problem.
▸ Convergence of generic solvers unclear.
▸ Practitioners use single linearization step with heuristic

regularization and no theoretical justification.

Monotonicity-based regularization of linearized EIT equation
▸ uses that shape reconstr. in EIT is (essentially) a linear problem,
▸ yields solutions that rigorously converge against correct shape,
▸ combines rigorous theory of monotonicity method with practical

robustness of residuum-based methods.

Approach (monotonicity + localized potentials) can be extended
▸ to partial boundary data, independently of dimension n ≥ 2
▸ to other linear elliptic problems (diffuse optical tomography, magnetostatics)

▸ at least partially to closely related problems
(eddy-current equations, p-Laplacian)

B. Harrach: Monotonicity-based regularization of inverse coefficient problems


