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Electrical impedance tomography (EIT) ONIERSITAT
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» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Mathematical Model UNIVERSITAT

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeQ

QcR" imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

odvu(x)|ya: applied electric current
u(x)|pq: measured boundary voltage (potential)
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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulpq) : usolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Inversion of ¢ — A(0)? ENERSITAT

Generic optimization-based solvers for non-linear inverse problems:
» Linearize and regularize:

Ameas A(G) N A(GO) +A’(O-O)(G - 60)-
op: Initial guess or reference state (e.g. exhaled state)

~ Linear inverse problem for o
(Solve using linear regularization method, repeat for Newton-type algorithm.)

» Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

HAmeas—/\(O')||2+Ot HG—G()”2 — min!

Advantages of generic optimization-based solvers:
» Very flexible, additional data/unknowns easily incorporated
» Problem-specific regularization can be applied
(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of ¢ — A(0)?

Problems with generic optimization-based solvers
» High computational cost

» Evaluations of A(-) and A’(-) require PDE solutions.
» PDE solutions too expensive for real-time imaging

» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)
» Convergence against true solution for exact meas. Ameas?
(in the limit of infinite computation time)
» Convergence against true solution for noisy meas. AS,:?
(in the limit of § — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

» Influence of modelling errors

» Evaluations of A(+) affected by large modelling errors
(boundary geometry, electrode position, etc.)
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Linearized methods EAANKY SR AN iat

Popular approach in practice:
» Measure difference data Ameas ¥ A(0) — A(0p).

(e.g. A(0p) measurement at exhaled state)

» Calculate ¢ — oy from Ameas by single linearization step.

Standard linearized method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve A'(00) K = Ameas, then k = ¢ — oy.

After discretization and regularization:
ISk -V|?+a x| * - min!

S: sensitivity matrix, V: vector of EIT measurements.
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Linearization and shape reconstruction ONIERSITAT

Theorem (H./Seo, SIMA 2010)
Let x, o, 0p pcw. analytic.

N'(o)k=A(0)-A(G)) == suppyK =suppyo (0 —00)

supp,q: outer support ( = supp + parts unreachable from dQ)

» Linearized EIT equation contains correct shape information.

(in the continuous version for noise-free measurements on infinitely many electrodes)

» Practitioners use heuristic regularization of linearized EIT equ.

(in the discretized version for noisy measurements on finitely many electrodes)

Can we minimize linearized data-fit residual with a regularization that
rigorously guarantees convergence of reconstructed shapes?
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Inclusion detection

Sample inclusion detection problem (for ease of presentation)
» 0p=1
> O] = 1 + XD
» D open, DcQ, Q\ D connected

All of the following also holds for

» Op pcw. analytic,

» 01 =0p+Kxp with k€ L° (D),

> in any dimension n > 2,

» for partial boundary data on open subset I' € 9Q,
as long as oy and bounds on k are known.
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Rigorous inclusion detection in EIT

» Linear Sampling Method (Scattering: Colton/Kirsch 1996):
72¢D = I(z)=o0
» Rigorously detects subset of D for exact data.
» Factorization Method (Scattering: Kirsch 1998, EIT: Briihl/Hanke 1999):
72¢D <= I(z)=o0.

» Rigorously detects D for exact data.
» No convergence result for noisy data A2, = A(c) - A(1).

» (Linearized) Monotonicity Method
> Tamburrino/Rubinacci 02:
BcD = A(l+xp)>A(0).
» H./Ullrich, SIMA 2013:

BcD < A(l+xp)2A(0)

— A(1)+%A'(1)XB > A(0).
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Monotonicity Method FRANKY D2 M M ATy

H./Ullrich, SIMA 2013:

BED = A1)+ N (D)i2A(0)

v

Simple to implement, no PDE solutions
» Same computational cost as FM or single linearization step

v

Rigorously detects unknown shape for exact data
» Convergence for noisy data AS ... > A(c) - A(1):

5 1IN (1) > AS s - 1
R(Armeas, ,B) '_{ 0 else.

Then R(A%..s,8,B) — 1 iff BSD.
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Monotonicity method

Quantitative, pixel-based variant of monotonicity method:
> Pixel partition Q = U;" | P
» Quantitative monotonicity tests
Bi € [0,00] max. values s.t. BrA'(1)xp, > A(c) - A(1)
B €[0,00] max. values s.t. BOA'(1)xp, 2 Al ons — 81

“Raise conductivity in each pixel until monotonicity test fails.”

» By theory of monotonicity method:

[ . ﬁk =0 ifP ¢ D
B¢ — Bx and B fulfills { B it P.cD

i\
=

Plotting B,f shows true inclusions up to pixel partition.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity Standard linearized
method method

» Monotonicity method rigorously converges for 6 =0 ...

» ... but the heuristic standard linearized method works much
better for realistic scenarios.

Can we improve the monotonicity method without loosing
convergence?
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Monotonicity-based regularization

» Standard linearized methods for EIT: Minimize
|A' (1)K = (A(0) = A(1)) | + et i[> > min!
Choice of norms heuristic. No convergence theory!
» Monotonicity-based regularization: Minimize
[A"(1)x~ (A(6) = A(1))] £ — min!

under the constraint k|p, = const., 0 < k|p, <min{3, B}

(|| || 7 Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, Inverse Problems 2016)
» There exists unique minimizer k and

P, Csuppk <= P.Csupp(c-1).

» Minimizer fulfills & = Y7 min{1/2, B} 2,
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Monotonicity-based regularization

For noisy measurements AS... ~ A(c) - A(1):
» Use regularized monotonicity tests
B €[0,00] max. values s.t. BOA'(1)xp, 2 Al ons — 81
(8 > 0: noise level in £(L2(3Q))-norm)
» Minimize
HA,(I )K5 _ArieasH F = min!

under the constraint x°|p, = const., 0 < k°|p, < min{%,ﬁf}.

Theorem (H./Mach, Inverse Problems 2016)

» There exist minimizers k% and k% — & for § — 0.

Monotonicity-regularized solutions converge against correct shape.
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Realistic example (32 electrodes, 1% noise)

True image Monotonicity regularized Standard linearized
method method

» Monotonicity regularized method rigorously converges and is up
to par with (outperforms?) heuristic standard linearized method.
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Phantom experiment
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Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, 2016)
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Benchmark example UNIVERSITAT
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standard monoton.-regularized monoton.-regularized
(Matlab quadprog) (cvx package)
Monotonicity-regularization vs. community standard
(H./Mach, submitted)

> EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
> EIDORS standard solver: linearized method with Tikhonov regularization

> Dataset: iirc_.data-2006 (Woo et al.): 2cm insulated inclusion in 20cm tank

> using interpolated data on active electrodes (H., Inverse Problems 2015)
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Conclusions EEAE L e
EIT is a highly ill-posed, non-linear inverse problem.
» Convergence of generic solvers unclear.

» Practitioners use single linearization step with heuristic
regularization and no theoretical justification.

Monotonicity-based regularization of linearized EIT equation
» uses that shape reconstr. in EIT is (essentially) a linear problem,
» yields solutions that rigorously converge against correct shape,

» combines rigorous theory of monotonicity method with practical
robustness of residuum-based methods.

Approach (monotonicity + localized potentials) can be extended
» to partial boundary data, independently of dimension n > 2
» to other linear elliptic problems (diffuse optical tomography, magnetostatics)
» at least partially to closely related problems

(eddy-current equations, p-Laplacian)
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