

Regularizing the optimization-based solution of inverse coefficient problems with monotonicity constraints

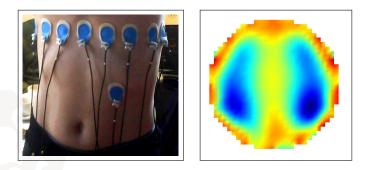
Bastian von Harrach (joint work with Mach Nguyet Minh)

http://numerical.solutions

Institute of Mathematics, Goethe University Frankfurt, Germany

The 10th International Conference on Optimization: Techniques and Applications (ICOTA 10) Ulaanbaatar, Mongolia, July 23–26, 2016.

Electrical impedance tomography (EIT)



- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject.

Electrical potential u(x) solves

 $\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in \Omega$

- $\Omega \subset \mathbb{R}^n$: imaged body, $n \ge 2$
 - $\sigma(x)$: conductivity
 - u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{v} u(x)|_{\partial \Omega}$: applied electric current $u(x)|_{\partial \Omega}$: measured boundary voltage (potential)

Calderón problem

Can we recover $\sigma \in L^\infty_+(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{u}) = 0, \quad \boldsymbol{x} \in \boldsymbol{\Omega}$$
 (1)

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

 $\Lambda(\sigma): L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$

where *u* solves (1) with $\sigma \partial_v u |_{\partial \Omega} = g$.

Optimization-based Inversion

Popular approach in practice:

- Measure difference data $\Lambda_{\text{meas}} \approx \Lambda(\sigma) \Lambda(\sigma_0)$. (e.g., $\Lambda(\sigma_0)$: measurement at exhaled state)
- Minimize (regularized and linearized) data fit functional

Standard linearized method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009) Approximate $\kappa \approx \sigma - \sigma_0$ by minimizing

$$\|\Lambda'(\sigma_0)\kappa - \Lambda_{\text{meas}}\|^2 + \alpha \|\kappa\|^2 \to \min!$$

Problem: Choice of norms heuristic. No convergence theory!

Theorem (H./Seo, SIMA 2010) Let κ , σ , σ_0 pcw. analytic.

 $\Lambda'(\sigma_0)\kappa = \Lambda_{\text{meas}} = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \text{supp}_{\partial\Omega}\kappa = \text{supp}_{\partial\Omega}(\sigma - \sigma_0)$

 $supp_{\partial\Omega}$: outer support (= supp + parts unreachable from $\partial\Omega$)

- Linearized EIT equation contains correct shape information. (in the continuous version for noise-free measurements on infinitely many electrodes)
- Practitioners use heuristic regularization of linearized EIT equ. (in the discretized version for noisy measurements on finitely many electrodes)

Can we find a regularization that rigorously guarantees convergence of reconstructed shapes?

Monotonicity based imaging

Monotonicity:

$$\tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

• Pixel-wise inclusion detection: For $\sigma = \sigma_0 + \chi_D$ with unknown *D*, use $\tau = \sigma_0 + \chi_P$ on pixel *P*

$$P \subseteq D \implies \tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

Quantitative and linearized version: For *k*-th pixel P_k , maximize $\beta_k \rightarrow \max!$ s.t. $\beta_k \Lambda'(\sigma_0) \chi_{P_k} \ge \Lambda(\sigma) - \Lambda(\sigma_0)$.

• Theorem. (H./Ullrich, SIMA 2013)

$$\exists a > 0: \quad \left\{ \begin{array}{ll} \beta_k = 0 & \text{if } P_k \notin D \\ \beta_k \ge a & \text{if } P_k \subseteq D \end{array} \right.$$

Monotonicity-based regularization

Monotonicity-based regularization: Minimize

$$\|\Lambda'(\sigma_0)\kappa - (\Lambda(\sigma) - \Lambda(\sigma_0))\|_{\mathsf{F}} \to \min!$$

under the constraint $\kappa|_{P_k} = \text{const.}, \ 0 \le \kappa|_{P_k} \le \min\{a, \beta_k\}.$

($\|\cdot\|_F$: Frobenius norm of Galerkin projektion to finite-dimensional space)

Theorem (H./Mach, submitted)

• There exists unique minimizer $\hat{\kappa}$ and

$$P_k \subseteq \operatorname{supp} \hat{\kappa} \iff P_k \subseteq \operatorname{supp}(\sigma - \sigma_0).$$

Convergent regularization for noisy data, $\kappa^{\delta} \rightarrow \kappa$ pointwise.

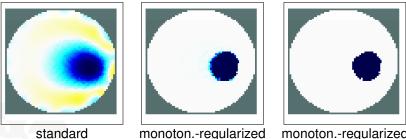
Monotonicity-regularized solutions converge against correct shape.

Phantom experiment

standard method		
with monotonicity constraints	• •	

Enhancing standard methods by monotonicity-based constraints (Zhou/H./Seo, 2016)

Benchmark example



Onoton.-regularized (Matlab quadprog)

monoton.-regularized (cvx package)

Monotonicity-regularization vs. community standard

(H./Mach)

- EIT community standard: GREIT in EIDORS
- EIDORS: http://eidors3d.sourceforge.net (Adler/Lionheart)
- GREIT: Graz consensus Reconstruction algorithm for EIT (Adler et al.)
- Dataset: iirc_data_2006 (Woo et al.): 2cm insulated inclusion in 20cm tank
 - using interpolated data on active electrodes (H., Inverse Problems 2015)

Conclusions

EIT is a highly ill-posed, non-linear inverse problem.

- Convergence of generic solvers unclear.
- Practitioners minimize linearized data-fit functional with heuristic regularization and no theoretical justification.

Monotonicity-based regularization of linearized EIT equation

- uses that shape reconstr. in EIT is (essentially) a linear problem,
- yields solutions that rigorously converge against correct shape,
- combines rigorous theory of monotonicity method with practical robustness of residuum-based methods.