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Motivation and examples
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Laplace’s demon

Laplace’s demon: (Pierre Simon Laplace 1814)

”An intellect which (. . . ) would know all
forces (. . . ) and all positions of all items

(. . . ), if this intellect were also vast enough
to submit these data to analysis, (. . . ); for

such an intellect nothing would be
uncertain and the future just like the past

would be present before its eyes.”
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Computational Science

Computational Science / Simulation Technology:

If we know all necessary parameters, then we can numerically predict
the outcome of an experiment (by solving mathematical formulas).

Goals:

▸ Prediction

▸ Optimization

▸ Inversion/Identification
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Computational Science

Generic simulation problem:

Given input x calculate outcome y = F (x).

x ∈ X : parameters / input
y ∈ Y : outcome / measurements

F ∶ X → Y : functional relation / model

Goals:

▸ Prediction: Given x , calculate y = F (x).
▸ Optimization: Find x , such that F (x) is optimal.

▸ Inversion/Identification: Given F (x), calculate x .

B. Harrach: Introduction to Inverse Problems



Examples

Examples of inverse problems:

▸ Electrical impedance tomography

▸ Computerized tomography

▸ Image Deblurring

▸ Numerical Differentiation
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Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary

▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Electrical impedance tomography (EIT)

x
Image

Fz→ y = F (x)
Measurements

x : Interior conductivity distribution (image)
y : Voltage and current measurements

Direct problem: Simulate/predict the measurements
(from knowledge of the interior conductivity distribution)

Given x calculate F (x) = y !

Inverse problem: Reconstruct/image the interior distribution
(from taking voltage/current measurements)

Given y solve F (x) = y !
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X-ray computerized tomography

Nobel Prize in Physiology or Medicine 1979:
Allan M. Cormack and Godfrey N. Hounsfield
(Photos: Copyright ©The Nobel Foundation)

Idea: Take x-ray images from several directions
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Computerized tomography (CT)
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Measurements

Direct problem: Simulate/predict the measurements
(from knowledge of the interior density distribution)

Given x calculate F (x) = y !

Inverse problem: Reconstruct/image the interior distribution
(from taking x-ray measurements)

Given y solve F (x) = y !
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Image deblurring

x
True image

Fz→

y = F (x)
Blurred image

Direct problem: Simulate/predict the blurred image
(from knowledge of the true image)

Given x calculate F (x) = y !

Inverse problem: Reconstruct/image the true image
(from the blurred image)

Given y solve F (x) = y !
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Numerical differentiation
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y = F (x)
Primitive Function

Direct problem: Calculate the primitive
Given x calculate F (x) = y !

Inverse problem: Calculate the derivative
Given y solve F (x) = y !

B. Harrach: Introduction to Inverse Problems



Ill-posedness
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Well-posedness

Hadamard (1865–1963): A problem is called well-posed, if

▸ a solution exists,

▸ the solution is unique,

▸ the solution depends continuously on the given data.

Inverse Problem: Given y solve F (x) = y !

▸ F surjective?

▸ F injective?

▸ F−1 continuous?
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Ill-posed problems

Ill-posedness: F−1 ∶ Y → X not continuous.

x̂ ∈ X : true solution
ŷ = F (x̂) ∈ Y : exact measurement

y δ ∈ Y : real measurement containing noise δ > 0,
e.g. ∥yδ − ŷ∥

Y
≤ δ

For δ → 0

y δ → ŷ , but (generally) F−1(y δ) /→ F−1(ŷ) = x̂

Even the smallest amount of noise will corrupt the reconstructions.
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Numerical differentiation

Numerical differentiation example (h = 10−3)
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y(t) and y δ(t) y(t+h)−y(t)
h and yδ(t+h)−yδ(t)

h

Differentiation seems to be an ill-posed (inverse) problem.
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Image deblurring

F↦

↧ add 0.1% noise

F−1↤

Deblurring seems to be an ill-posed (inverse) problem.
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Image deblurring

F↦

↧ add 1% noise

F−1↤

CT seems to be an ill-posed (inverse) problem.
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Compactness and ill-posedness
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Compactness

Consider the general problem

F ∶ X → Y , F (x) = y

with X , Y real Hilbert spaces.
Assume that F is linear, bounded and injective with left inverse

F−1 ∶ F (X ) ⊆ Y → X .

Definition 1.1. F ∈ L(X ,Y ) is called compact, if

F (U) is compact for alle bounded U ⊆ X ,

i.e. if (xn)n∈N ⊂ X is a bounded sequence then (F (xn))n∈N ⊂ Y
contains a bounded subsequence.
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Compactness

Theorem 1.2. Let

▸ F ∈ L(X ,Y ) be compact and injective, and

▸ dimX =∞,

then the left inverse F−1 is not continuous, i.e. the inverse problem

Fx = y

is ill-posed.
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Compactness

Theorem 1.3. Every limit1 of compact operators is compact.

Theorem 1.4. If dimR(F ) <∞ then F is compact.

Corollary. Every operator that can be approximated1 by finite
dimensional operators is compact.

1in the uniform operator topology
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Compactness

Theorem 1.5. Let F ∈ L(X ,Y ) possess an unbounded left inverse
F−1, and let Rn ∈ L(Y ,X ) be a sequence with

Rny → F−1y for all y ∈R(F ).

Then ∥Rn∥→∞.

Corollary. If we discretize an ill-posed problem, the better we
discretize, the more unbounded our discretizations become.
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Compactness and ill-posedness

Discretization: Approximation by finite-dimensional operators.

Consequences for discretizing infinite-dimensional problems:

If an infinite-dimensional direct problem can be discretized1, then

▸ the direct operator is compact.

▸ the inverse problem is ill-posed, i.e. the smallest amount of
measurement noise may completely corrupt the outcome of the
(exact, infinite-dimensional) inversion.

If we discretize the inverse problem, then

▸ the better we discretize, the larger the noise amplification is.

1in the uniform operator topology
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Examples

▸ The operator

F ∶ function ↦ primitive function

is a linear, compact operator.

↝ The inverse problem of differentiation is ill-posed.

▸ The operator

F ∶ exact image ↦ blurred image

is a linear, compact operator.

↝ The inverse problem of image deblurring is ill-posed.
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Examples

▸ In computerized tomography, the operator

F ∶ image ↦ measurements

is a linear, compact operator.

↝ The inverse problem of CT is ill-posed.

▸ In EIT, the operator

F ∶ image ↦ measurements

is a non-linear operator. Its Fréchet derivative is a compact
linear operator.

↝ The (linearized) inverse problem of EIT is ill-posed.
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Regularization
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Numerical differentiation

Numerical differentiation example
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y(t) and y δ(t) y(t+h)−y(t)
h and yδ(t+h)−yδ(t)

h

Differentiation is an ill-posed (inverse) problem
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Regularization

Numerical differentiation:

▸ y ∈ C 2, C ∶= 2 supτ ∣g ′′(τ)∣ <∞, ∣y δ(t) − y(t)∣ ≤ δ ∀t

∣y ′(t) − y δ(t + h) − y δ(t)
h

∣

≤ ∣y ′(x) − y(t + h) − y(t)
h

∣

+ ∣y(t + h) − y(t)
h

− y δ(t + h) − y δ(t)
h

∣

≤ Ch + 2δ

h
→ 0.

for δ → 0 and adequately chosen h = h(δ), e.g., h ∶=
√
δ.
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Numerical differentiation

Numerical differentiation example
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y ′(t) yδ(t+h)−yδ(t)
h

yδ(t+h)−yδ(t)
h

with h very small with h ≈
√
δ

Idea of regularization: Balance noise amplification and approximation

B. Harrach: Introduction to Inverse Problems



Regularization

Regularization of inverse problems:

▸ F−1 not continuous, so that generally F−1(yδ) /→ F−1(y) = x for δ → 0

▸ Rα continuous approximations of F−1

Rα → F−1 (pointwise) for α→ 0

Rα(δ)y
δ → F−1y = x for δ → 0

if the parameter α = α(δ) is correctly chosen.

Inexact but continuous reconstruction (regularization)
+ Information on measurement noise (parameter choice rule)
= Convergence
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Prominent regularization methods

▸ Tikhonov regularization

Rα = (F ∗F + αI )−1F ∗

▸ Rα continuous, ∥Rα∥ ≤ 1
√

α

▸ Rαy → F−1y for α → 0, y ∈R(F )
▸ Rαy

δ minimizes

∥Fx − yδ∥2 + α ∥x∥2 → min!

▸ Truncated singular value decomposition (TSVD)

▸ Landweber method

▸ . . .
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Parameter choice rule
Convergence of Tikhonov-regularization

∥Rαy δ − F−1y∥ ≤ ∥Rα(y δ − y)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤∥Rα∥δ

+ ∥Rαy − F−1y∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 for α→ 0

Choose α(δ) such that (for δ → 0)

▸ α(δ)→ 0

▸ ∥Rα(δ)∥ δ = δ√
α(δ)

→ 0

then Rα(δ)y
δ → F−1y . E.g., set α(δ) ∶= δ.

Exakt inversion does not converge, F−1y δ /→ F−1y .
Tikhonov-regularization converges, Rδy

δ → F−1y .

Better parameter choice rule:
Choose α such that ∥FRαyδ − yδ∥ ≈ δ (discrepancy principle)
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Image deblurring

x̂ ŷ = F x̂ y δ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1y δ

(F ∗F + δI )−1F ∗y δ
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Computerized tomography

x̂ ŷ = F x̂ y δ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1y δ

(F ∗F + δI )−1F ∗y δ
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Conclusions and remarks

Conclusions

▸ Inverse problems are of great importance in comput. science.
(parameter identification, medical tomography, etc.)

▸ For ill-posed inverse problems, the best data-fit solutions
generally do not converge against the true solution.

▸ The regularized solutions do converge against the true solution.

Strategies for non-linear inverse problems F (x) = y :

▸ First linearize, then regularize.

▸ First regularize, then linearize.

A-priori information

▸ Regularization can be used to incorporate a-priori knowledge
(promote sparsity or sharp edges, include stochastic priors, etc.)
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