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Electrical impedance tomography (EIT) ONIERSITAT
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» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.
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Mathematical Model UNIVERSITAT

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeQ

QcR" imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

odvu(x)|ya: applied electric current
u(x)|pq: measured boundary voltage (potential)
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Calderdn problem UNIVERSITAT

Can we recover ¢ € L°(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00vulpq) : usolves (1)}?

Equivalent: Recover o from Neumann-to-Dirichlet-Operator
A(0): L3(9Q) > L3(9Q), g+ ulsa,

where u solves (1) with cdyulyq = g.
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Inversion of 6 = A(0C) = Ameas? UNIVERSITAT

Generic solvers for non-linear inverse problems:
» Linearize and regularize:
Ameas = A(0) » A(0p) +A'(0p) (0 - 0p).
op: Initial guess or reference state (e.g. exhaled state)
~ Linear inverse problem for o
(Solve using linear regularization method, repeat for Newton-type algorithm.)
» Regularize and linearize:
E.g., minimize non-linear Tikhonov functional
| Ameas = A(0)||> + & |6 — 09| > = min!

Advantages of generic solvers:
» Very flexible, additional data/unknowns easily incorporated
» Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems
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Inversion of 6 = A(0) = Ameas”

Problems with generic solvers

» High computational cost
(Evaluations of A(-) and A’(+) require PDE solutions)
» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

» Convergence against true solution for exact meas. Ameas?
(in the limit of infinite computation time)
» Convergence against true solution for noisy meas. Ageas?
(in the limit of 8 — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

D-bar method
» Convergent 2D-implementation for ¢ € C? and full bndry data

(Knudsen, Lassas, Mueller, Siltanen 2008)
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Linearization and shape reconstruction

Theorem (H./Seo, SIMA 2010)
Let k, o, 0p pcw. analytic.

AN(op)k=A(0)-A(0)) = suppyuK =supp,q(0—0p)

supp,q: outer support ( = supp + parts unreachable from dQ)

~ Linearized EIT equation contains correct shape information

Next slides: Idea of proof using monotonicity & localized potentials.
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Monotonicity FRANKY D2 M M ATy

For two conductivities oy, 01 € L= (Q):

cp<or = A(op)>A(01)

This follows from
[ (o=l > [ g(Alon)-Ae))g> [ 2 (01-00)[Tuol
Q o0 Q 0]
for all solutions u of
V-(0oVug) =0, 0pdvuglyq = &-

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)
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Localized potentials FRANKY D2 M M ATy

Theorem (H., IPI 2008)
Let oy fulfill unique continuation principle (UCP),

DinDy=@, and Q- (D;uD;) be connected with X.

Then there exist solutions u(()k), k € N with

2
/ |Vu(()k) dx - o0 and f
Dy D,

|Vuo|? small |Vug|? small
|Vuol|? large s |V uol|? large s
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UNIVERSITAT

Proof of shape invariance under linearization

» Linearization: A’(op)k =A(c)-A(0p)
» Monotonicity: For all "reference solutions* uy:

| (= a0)|vuof*

> fan(A(GO)—A(G))g 2/9%(6—60)|Vu0|2 dx.

- [ g(W(on)x)g= [ xivuol dr

» Use localized potentials to control |Vug|?

~ SUPPyoK = suppyq (6 —0p) m
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Linearization and shape reconstruction ONIERSITAT

Theorem (H./Seo, SIMA 2010)
Let k, o, 0y pcw. analytic.

A(00)k=A(0)~A(0) —> SuUPPyqK = Suppyg (0~ o)

supp,gq: outer support ( = supp + parts unreachable from 9Q)

~ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, ... )
in a fast, rigorous and globally convergent way?
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Monotonicity based imaging

» Monotonicity:

1<0c = A(7r)>A(0)

v

Idea: Simulate A(7) for test cond. T and compare with A(o).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)

» Inclusion detection: For ¢ = 1 + yp with unknown D,
use T =1+ xp, with small ball B.

BcD — 1<0 =— A(1)>A(0)

v

Algorithm: Mark all balls B with A(1+ xz) > A(0)
» Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Monotonicity method (for simple test example) UNIVERSITAT

Theorem (H./ulirich, SIMA 2013)
QD connected. o =1+ yp.

BcD <« A(l1+yxp)>A(0).

For faster implementation:
BcD <« A(1)+3A(1)xs>A(0).

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

~» fast, rigorous, allows globally convergent implementation
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Improving residuum-based methods

Theorem (H./Minh, preprint)
Let Q\ D connected. 6 = 1+ yp.

> Pixel partition Q = U;" | P
» Monotonicity tests

By € [0,00] max. values s.t. BrA'(1)xp, > A(0) - A(1)

» R(x) € R**: Discretization of lin. residual A(c) - A(1)-A’(1)k

(e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem
|R(x)|F —min! st k|p =const., 0<k|p <min{3, B}

possesses a unique solution k, and P € supp K iff P, € supp(c —1).
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Phantom experiment
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Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, submitted)
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Realistic data & Uncertainties

» Finite number of electrodes, CEM, noisy data /\3(6)

» Unknown background, e.g., 1 - < op(x) <1+¢

» Anomaly with some minimal contrast to background, e.g.,
o(x)=o0p(x)+x(x)xp, K(x)>1

» Can we rigorously guarantee to find inclusion D?

H./Ullrich (IEEE TMI 2015): T 11
Rigorous Resolution Guarantee L[] o :
1
> If D =@, methods return @. [ 1] b
» If D> w; then it is detected. | || L] 54
3
(Here: 32 electrodes, € = 1%, 6 = 1.4%) ()
[ 1] el
]
Q
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Conclusions NLVERSITAT

EIT is a highly ill-posed, non-linear inverse problem.
» Convergence of generic solvers unclear.
» But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction
» allow fast, rigorous, globally convergent implementations.
» work in any dimensions n > 2, full or partial boundary data.
» can enhance standard residual-based methods.
» yield rigorous resolution guarantees for realistic settings.

Open problems / challenges:
» Method requires voltages on current-driven electrodes

(H., IR, to appear: Missing electrode data may be replaced by interpolation.)

» Method applicable without definiteness, but more complicated.
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