

Monotonicity-based methods for elliptic inverse coefficient problems

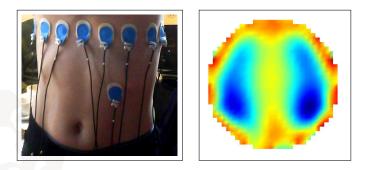
Bastian von Harrach

harrach@math.uni-frankfurt.de

Institute of Mathematics, Goethe University Frankfurt, Germany

Mathematics for Imaging Ecole Normale Supérieure, Paris, France October 21–23, 2015

Electrical impedance tomography (EIT)



- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject.

Electrical potential u(x) solves

 $\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in \Omega$

- $\Omega \subset \mathbb{R}^n$: imaged body, $n \ge 2$
 - $\sigma(x)$: conductivity
 - u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{v} u(x)|_{\partial \Omega}$: applied electric current $u(x)|_{\partial \Omega}$: measured boundary voltage (potential)

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \boldsymbol{u}) = 0, \quad \boldsymbol{x} \in \boldsymbol{\Omega}$$
 (1)

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves (1)}\}?$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

 $\Lambda(\sigma): L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$

where *u* solves (1) with $\sigma \partial_v u |_{\partial \Omega} = g$.

Inversion of $\sigma \mapsto \Lambda(\sigma) = \Lambda_{meas}$?

Generic solvers for non-linear inverse problems:

Linearize and regularize:

$$\Lambda_{\text{meas}} = \Lambda(\sigma) \approx \Lambda(\sigma_0) + \Lambda'(\sigma_0)(\sigma - \sigma_0).$$

 σ_0 : Initial guess or reference state (e.g. exhaled state)

ightarrow Linear inverse problem for σ

(Solve using linear regularization method, repeat for Newton-type algorithm.)

Regularize and linearize:

E.g., minimize non-linear Tikhonov functional

$$\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \min!$$

Advantages of generic solvers:

- Very flexible, additional data/unknowns easily incorporated
- Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)

Inversion of $\sigma \mapsto \Lambda(\sigma) = \Lambda_{\text{meas}}$?

Problems with generic solvers

High computational cost

(Evaluations of $\Lambda(\cdot)$ and $\Lambda'(\cdot)$ require PDE solutions)

Convergence unclear

(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

- Convergence against true solution for exact meas. Λ_{meas}? (in the limit of infinite computation time)
- Convergence against true solution for noisy meas. $\Lambda_{\text{meas}}^{\delta}$? (in the limit of $\delta \rightarrow 0$ and infinite computation time)
- Global convergence? Resolution estimates for realistic noise?

D-bar method

• Convergent 2D-implementation for $\sigma \in C^2$ and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)

Theorem (H./Seo, SIMA 2010) Let κ , σ , σ_0 pcw. analytic.

$$\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$$

 $\operatorname{supp}_{\partial\Omega}$: outer support (= supp + parts unreachable from $\partial\Omega$)

Linearized EIT equation contains correct shape information

Next slides: Idea of proof using monotonicity & localized potentials.

Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \leq \sigma_1 \implies \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$

for all solutions u0 of

$$\nabla \cdot (\boldsymbol{\sigma}_0 \nabla u_0) = 0, \quad \boldsymbol{\sigma}_0 \partial_{\boldsymbol{v}} u_0|_{\partial \Omega} = g.$$

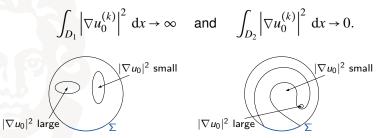
(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Localized potentials

Theorem (H., IPI 2008) Let σ_0 fulfill unique continuation principle (UCP),

 $\overline{D_1}\cap\overline{D_2}=\varnothing,\quad\text{and}\quad \Omega\smallsetminus(\overline{D}_1\cup\overline{D}_2)\text{ be connected with }\Sigma.$

Then there exist solutions $u_0^{(k)}$, $k \in \mathbb{N}$ with



Proof of shape invariance under linearization

П

- Linearization: $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) \Lambda(\sigma_0)$
- Monotonicity: For all "reference solutions" *u*₀:

$$\int_{\Omega} (\sigma - \sigma_0) |\nabla u_0|^2 dx$$

$$\geq \underbrace{\int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma)) g}_{= -\int_{\partial \Omega} g(\Lambda'(\sigma_0) \kappa) g = \int_{\Omega} \kappa |\nabla u_0|^2 dx.$$

• Use localized potentials to control $|\nabla u_0|^2$

$$\Rightarrow \operatorname{supp}_{\partial\Omega} \kappa = \operatorname{supp}_{\partial\Omega} (\sigma - \sigma_0)$$

Theorem (H./Seo, SIMA 2010) Let κ , σ , σ_0 pcw. analytic.

 $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$

 $\operatorname{supp}_{\partial\Omega}$: outer support (= supp + parts unreachable from $\partial\Omega$)

→ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, ...) in a fast, rigorous and globally convergent way?

Monotonicity based imaging

Monotonicity:

$$\tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

- Idea: Simulate Λ(τ) for test cond. τ and compare with Λ(σ).
 (*Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...*)
- Inclusion detection: For $\sigma = 1 + \chi_D$ with unknown *D*, use $\tau = 1 + \chi_B$, with small ball *B*.

$$B \subseteq D \implies \tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

- Algorithm: Mark all balls *B* with $\Lambda(1 + \chi_B) \ge \Lambda(\sigma)$
- Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?

Monotonicity method (for simple test example)

Theorem (H./Ullrich, SIMA 2013) $\Omega \setminus \overline{D}$ connected. $\sigma = 1 + \chi_D$.

$$B \subseteq D \iff \Lambda(1+\chi_B) \ge \Lambda(\sigma).$$

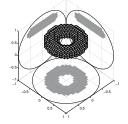
For faster implementation:

$$B \subseteq D \iff \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma).$$

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

→ fast, rigorous, allows globally convergent implementation



Improving residuum-based methods

Theorem (H./Minh, preprint) Let $\Omega \setminus \overline{D}$ connected. $\sigma = 1 + \chi_D$.

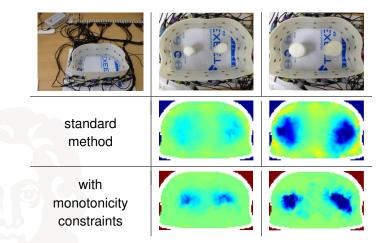
- Pixel partition $\Omega = \bigcup_{k=1}^{m} P_k$
- Monotonicity tests

 $\beta_k \in [0, \infty]$ max. values s.t. $\beta_k \Lambda'(1) \chi_{P_k} \ge \Lambda(\sigma) - \Lambda(1)$

• $R(\kappa) \in \mathbb{R}^{s \times s}$: Discretization of lin. residual $\Lambda(\sigma) - \Lambda(1) - \Lambda'(1)\kappa$ (e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem $||R(\kappa)||_{\mathsf{F}} \rightarrow \min!$ s.t. $\kappa|_{P_k} = \operatorname{const.}, 0 \le \kappa|_{P_k} \le \min\{\frac{1}{2}, \beta_k\}$ possesses a unique solution κ , and $P_k \subseteq \operatorname{supp} \kappa$ iff $P_k \subseteq \operatorname{supp}(\sigma - 1)$.

Phantom experiment



Enhancing standard methods by monotonicity-based constraints

(Zhou/H./Seo, submitted)

Realistic data & Uncertainties

- Finite number of electrodes, CEM, noisy data $\Lambda^{\delta}(\sigma)$
- Unknown background, e.g., $1 \varepsilon \le \sigma_0(x) \le 1 + \varepsilon$
- Anomaly with some minimal contrast to background, e.g.,

$$\sigma(x) = \sigma_0(x) + \kappa(x)\chi_D, \quad \kappa(x) \ge 1$$

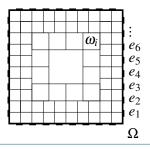
Can we rigorously guarantee to find inclusion D?

H./Ullrich (IEEE TMI 2015):

Rigorous Resolution Guarantee

- If $D = \emptyset$, methods return \emptyset .
- If $D \supset \omega_i$ then it is detected.

(Here: 32 electrodes, $\varepsilon = 1\%$, $\delta = 1.4\%$)



Conclusions

EIT is a highly ill-posed, non-linear inverse problem.

- Convergence of generic solvers unclear.
- But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction

- > allow fast, rigorous, globally convergent implementations.
- work in any dimensions $n \ge 2$, full or partial boundary data.
- can enhance standard residual-based methods.
- > yield rigorous resolution guarantees for realistic settings.

Open problems / challenges:

- Method requires voltages on current-driven electrodes
 (H., IP, to appear: Missing electrode data may be replaced by interpolation.)
- Method applicable without definiteness, but more complicated.