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» Apply electric currents on subject’s boundary
» Measure necessary voltages
~~ Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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e Mathematical Model

Electrical potential u(x) solves
V. (o(x)Vu(x))=0 xe€Q

Q CR"™ imaged body, n > 2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

o0yu(x)|aq: applied electric current
u(x)|aq: measured boundary voltage (potential)
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'wa Calderdn problem
Can we recover o € L(Q) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(ulpq,00,ulpq) : wusolves (1)}7?

Equivalent: Recover ¢ from Neumann-to-Dirichlet-Operator
No): L3(0Q) = L3(09), g+ ulon,

where u solves (1) with 00, ulgpg = g.
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Partial /local data

Measurements on open part of boundary ¥ C 0%:
(0Q2\ X is kept insulated.)

Recover o from
No): LX) = L3(X), g+ uls,

where u solves V - (6Vu) = 0 with

g ongx,
o0y uls = { 0 else.
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Optimization and Inverse Problems

Given measurements Aneasured
» Inverse Problem: Solve A(0) = Ameasured
» Optimization: Minimize ||A(0) — Ameasured||? (+ regularization)

Special challenges in inverse problems:
» Uniqueness is crucial.

» Local minima are usually useless.

v

Convergence of iterates to true solution is crucial.
Additional assumptions can often not be justified.

(sufficient optimality conditions, constraint qualifications, source conditions, ... )

v

Inverse coeff. problems pose major challenges even for simple PDEs.
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Challenges

Challenges in inverse coefficient problems such as EIT:

» Uniqueness
> Is o uniquely determined from the NtD A(c)?
» Non-linearity and ill-posedness
> Reconstruction algorithms to determine o from A(o)?
> Local/global convergence results?
> Realistic data
» What can we recover from real measurements?

(finite number of electrodes, realistic electrode models, . ..)
» Measurement and modelling errors? Resolution?

In this talk: A simple strategy (monotonicity + localized potentials)
to attack these challenges.

B. Harrach: Inverse coefficient problems in elliptic partial differential equations



University of Stuttgart

Germany.

Uniqueness
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Uniqueness results

» Measurements on complete boundary (full data):
Calderdn (1980), Druskin (19824-85), Kohn/Vogelius (1984+85),
Sylvester/Uhlmann (1987), Nachman (1996), Astala/Paivarinta (2006)

» Measurements on part of the boundary (local data):
Bukhgeim/Uhlmann (2002), Knudsen (2006), Isakov (2007),
Kenig/Sjéstrand/Uhlmann (2007), H. (2008),
Imanuvilov/Uhlmann/Yamamoto (2009+10), Kenig/Salo (2012+13)

> L coefficients are uniquely determined from full data in 2D.
> In all cases, piecew.-anal. coefficients are uniquely determined.
» Sophisticated research on uniqueness for ~ C?-coefficients

(based on CGO-solutions for Schrodinger eq. —Au+ qu =0, g = A\/‘{g).

Next: Uniqueness proof using monotonicity and loc. potentials.
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e Monotonicity

For two conductivities o9, 01 € L>(Q):
oo < 01 — /\(0’0) > /\(01)

This follows from
/ (01— 00)|Vuol? > / g (A(o0) — A(01)) & > / %0 (5, — 00) [V
Q Y Q o1

for all solutions wug of

g onkx,

V- (00Vup) =0, 000,upls = { 0 else.

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Can we prove uniqueness by controlling |V up|??
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o Localized potentials

Theorem (H., 2008)
Let o fulfill unique continuation principle (UCP),

DiNDy=10, and Q\(D;UD3) be connected with ¥.
Then there exist solutions u(()k), k € N with

Jo

2
Vu(()k)‘ dx — 0.

2
Vu(()k)’ dx —- 00 and /
D>

|Vug|? small |Vug|? small

[Vuol|? large S |V uol? large $
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Proof 1/3

Virtual measurements:

Lp: HYD) — L%(X), f ulg, with

/ oVu-Vvdx = (f,v|p) VYve HYD).
Q

By (UCP): If DyN' Dy = and Q\ (D1 U D3) is connected with ¥,
then R(LDl) N 'R(LDQ) =0.

Sources on different domains yield different virtual measurements.
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Proof 2/3

Dual operator:

Ly : L2(X) — HYD), g+ ulp,, with

V- (oVu) =0, oduly = { g :I’;ez'

Evaluating solutions on D is dual operation to virtual measurements.
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Functional analysis:
X, Y1, Ya reflexive Banach spaces, L1 € £(Y1, X), Lo € L(Y1, X).

R(L) CR(L) < [|Lix] S ILhx] vx € X"

Here: R(Lp,) £ R(Lp,) = |luolp,ll 2 Z lluolosll -

If two sources do not generate the same data, then the respective
evaluations are not bounded by each other.

Note: Hl(D)-source <—  HZX(D)-evaluation.
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Consequences

» Back to Calderdn: Let A(og) = A(o1), oo fulfills (UCP).

» By monotonicity,
/(01 — 00)|Vuo|? dx >0 > / %01 — 00)|Vuol? dx  Yuo
Q Q01

» Assume: d neighbourhood U of ¥ where 01 > g9 but 01 # 09

~> Potential with localized energy in U contradicts monotonicity

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Druskin 1982+85, Kohn/Vogelius, 1984+-85)
Calderdn problem is uniquely solvable for piecw.-anal. conductivities.
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Diffuse optical tomography

Same strategy shows uniqueness for two coefficients (H. 2009+12):

-V -(aVu)+cu=0 inQ.

> Let a,c pcw. constant, then
A1, ) =NMNax, ) <= ar=ayand = c.

» Let a, ¢ pcw. anal., then A(a1, c1) = A(a2, c2)

Avar | a= Ava | 2 on smooth parts

Yal Va2

alle _ ajlr [Ovalr _ [Bvanlr : o

=L =2 =2l = 222 on discontinuity set
arlr a Ir a Ir arIr

Proof: Monotonicity + localized potentials
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Non-linearity
Back to the non-linear forward operator of EIT

A: o= No), LT(Q) — L(LA(X))

Generic approach for inverting A: Linearization
A(o) — N(oo) ~ N(0o0)(c — d0)

oo: known reference conductivity / initial guess / ...

N (o9): Fréchet-Derivative / sensitivity matrix.

N(00) : LT(Q) — L(L3(T)).

~~ Solve linearized equation for difference o — oy.

Often: supp(o — gg) C Q ("shape” / "inclusion )
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Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve N'(o9)k = A(o) — N(og), then k ~ o — 0y.

v

Multiple possibilities to measure residual norm and to regularize.

v

No rigorous theory for single linearization step.

v

Almost no theory for Newton iteration:

> Dobson (1992): (Local) convergence for regularized EIT equation.
> Lechleiter/Rieder(2008): (Local) convergence for discretized setting.

» No (local) convergence theory for non-discretized case!
Non-linearity condition (Scherzer / tangential cone cond.) still open problem
D-bar method: convergent 2D-implementation for o € C?
and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)

v
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e Linearization

Linear reconstruction method
e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve N'(o9)k = A(o) — N(og), then k =~ o — 0y.

» Seemingly, no rigorous results possible for single lineariz. step.

» Seemingly, only justifiable for small o — g (local results).

Here: Rigorous and global(!) result about the linearization error.

B. Harrach: Inverse coefficient problems in elliptic partial differential equations



University of Stuttgart

&

Linearization and shape reconstruction

Theorem (H./Seo 2010)
Let x, o, op piecewise analytic and A'(og)x = A(o) — A(og). Then

suppy K = supps (o — 0o)

suppy: outer support ( = support, if support is compact and has conn. complement)

» Solution of lin. equation yields correct (outer) shape.
» No assumptions on o — og!

~> Linearization error does not lead to shape errors.

Taking the (wrong) reference current paths for reconstruction
still yields the correct shape information!
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» Linearization: N (o¢)x = A(o) — A(oo)

» Monotonicity: For all "reference solutions* wup:
/(a — 00)| Vo2 dx
Q
> a0 2
> [ (Moo~ AoNg = [ 2o~ a0)|Tuof d.
¥ Q0

:/zg(/\’(ao),-f.;)g:/ﬂmvtloﬁ dx

» Use localized potentials to control |V ug|?
~+ suppyk = suppy (o — o) m

In shape reconstruction problems we can avoid non-linearity.
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Monotonicity based imaging

» Monotonicity:
T<o = N7)>N\(0)

» |dea: Simulate A(7) for test cond. 7 and compare with A(o).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)

» Inclusion detection: For ¢ = 1 4 xp with unknown D,
use 7 = 1+ xpg, with small ball B.

BCD = 71<0 = NA)>N\0)

» Algorithm: Mark all balls B with A(1+ xg) > A(0)
» Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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e Converse monotonicity relation

Theorem (H./Ullrich, 2013)
Q\ D connected. 0 =1+ xp.

BCD <= A1+ xg)>ANAo).

~ Monotonicity method detects exact shape.

For faster implementation:

BCD <<= A1)+ iN(1)xg > N o).

~> Linearized monotonicity method detects exact shape.

Proof: Monotonicity + localized potentials
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" General case

Theorem (H./Ullrich, 2013). Let o € LSFOLQ) be piecewise analytic.
The intersection of all hole-free C C Q with

Ja>1: M1+ axc) <Ao) <A1 - xc/a)

is identical to the (outer) support of o — 1.

» Result also holds with linearized condition
Ja>1: A1)+ aN(1)xc < A() < A1) —aN(1)xc.

» Result covers indefinite case,
eg.,o=14xp, — ixp,
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Monotonicity based shape reconstruction

Monotonicity based reconstruction
> is intuitive, yet rigorous
» is stable (no infinity or range tests)

» works for pcw. anal. conductivities
(no definiteness conditions)

> requires only the reference solution

Approach is closely related to (and heavily inspired by)
» Factorization Method of Kirsch and Hanke

(in EIT: Briihl, Hakula, H., Hyvénen, Lechleiter, Nachman, P&ivirinta, Pursiainen,

Schappel, Schmitt, Seo, Teirild, Woo, ... )

> lkehata's Enclosure Method and probing with Sylvester-
Uhlmann-CGOs (Ide, Isozaki, Nakata, Siltanen, Wang, ...)

» Classic inclusion detection results (Friedmann, Isakov, . ..)
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v

v

v

v

Finite number of electrodes, CEM, noisy data A%(o)
Unknown background, e.g., 1 —e < op(x) < 1+¢
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Anomaly with some minimal contrast to background, e.g.,
o(x) = oo(x) + k(x)xp, kK(x) =1
Can we rigorously guarantee to find inclusion D?

Monotonicity-based

Rigorous Resolution Guarantee

(H./Ullrich, to appear): an—

€6

» If D =), method returns 0. | [

€5

» If D D wj; then it is detected.

€4

(Here: 32 electrodes, € = 1%, § = 1.4%)

€1
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Conclusions

Using monotonicity and localized potentials we can show
> uniqueness results for piecewiese anal. coefficients.
> invariance of shape information under linearization.

> resolution guarantees for locating anomalies in unknown
backgrounds with realistic finite precision data.

Major limitations / open problems for our approach
> Piecewise analyticity required to prevent infinite oscillations.

» Approach requires operator/matrix-structure of measurements.

(~ Voltage has to be measured on current-driven electrodes.)
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