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Electrical impedance tomography (EIT)

» Apply electric currents on subject’s boundary
» Measure necessary voltages

~ Reconstruct conductivity inside subject.
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e Mathematical Model

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeQ

QcR™ imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

c,u(x)|aq: applied electric current
u(x)|sq: measured boundary voltage (potential)
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'wa Calderdn problem
Can we recover o € L°(€2) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(uloq,00,ulsq) : wusolves (1)}7

Equivalent: Recover ¢ from Neumann-to-Dirichlet-Operator
No): L3(99) - L3(09), g = uloa,

where u solves (1) with 00, ulsq = g.
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Inversion of o = A(0) = Ameas?

Generic solvers for non-linear inverse problems:
» Linearize and regularize:
Ameas = A(U) N /\(UO> + A’(UO)(U - 00)'
op: Initial guess or reference state (e.g. exhaled state)
~r Linear inverse problem for o

(Solve using linear regularization method, repeat for Newton-type algorithm.)
» Regularize and linearize:

E.g., minimize non-linear Tikhonov functional
”/\meas - A(U)||2 + OZHO' - O'0H2 — min!

Advantages of generic solvers:

» Very flexible, additional data/unknowns easily incorporated
» Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of o = A(0) = Ameas?

Problems with generic solvers

» High computational cost
(Evaluations of A(-) and A’(-) require PDE solutions)
» Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

» Convergence against true solution for exact meas. Aneas?
(in the limit of infinite computation time)
» Convergence against true solution for noisy meas. AJ,.,.?
(in the limit of § — 0 and infinite computation time)
» Global convergence? Resolution estimates for realistic noise?

D-bar method

» convergent 2D-implementation for o € C2 and full bndry data
(Knudsen, Lassas, Mueller, Siltanen 2008)
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Shape reconstruction in EIT

o: Actual (unknown) conductivity
op: Initial guess or reference state (e.g. exhaled state)

» supp(o — o) often relevant in practice

Shape reconstruction problem (aka anomaly or inclusion detection)

Can we recover supp(o — oq) from N(o) —N(op)?

» Generic approach: parametrize supp(c —o0g), Level-Set-Methods
» Problems:

» PDE solutions required in each iteration
» convergence unclear
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o Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)
Let k, o, op pcw. analytic.

N(oo)k=N(o) = N(og) == suppyak = suppyq (o — o)

suppgq: outer support ( = supp + parts unreachable from 9Q)

~r Linearized EIT equation contains correct shape information

Next slides: Idea of proof using monotonicity & localized potentials.
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e Monotonicity

For two conductivities g, 07 € L*(Q):

oo<or = N(og) 2N\ (01)

This follows from
2 g0 2
Jor-a0)vul > [ g(ho0)-Aen)e> [ 2(or-o0)|vul
Q a0 Qo
for all solutions wug of
V- (O‘oVUo) =0, O'Oal,uO|3Q =g.
(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)
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o Localized potentials

Theorem (H., 2008)
Let og fulfill unique continuation principle (UCP),

DinDy=g, and Q~(D;uD,) be connected with X.
Then there exist solutions uék), k € N with

‘Vuok)| dx - o0 and |Vuék)’ dx — 0.

|Vugl? small |Vugl? small

|Vuol? large |Vuol large
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o Proof of shape invariance under linearization

» Linearization: A'(o¢)k =A(o) — A(op)
» Monotonicity: For all "reference solutions™ up:

/S;(O'—O'())|VU0|2 dx
> [ gMo0)-A@)e > [ P(r-00)Vuol ax.
:_faﬂg,r(/\’(ao)ﬁ;)gzfQ/<u'|Vuo|2 dx

» Use localized potentials to control |V ug|?

~ SUppgak = suppyq (o — 0o) m|
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o Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)
Let k, o, og pcw. analytic.

N(oo)k=N(o)-N(og) = suppygk = suppgyq(c - 0o)

suppgq: outer support ( =supp + parts unreachable from 9Q)

~ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, . .
in a fast, rigorous and globally convergent way?
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Monotonicity based imaging

» Monotonicity:

T<o = N(1)2N\(0)

v

|dea: Simulate A(7) for test cond. 7 and compare with A(o).

(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)

» Inclusion detection: For 0 =1+ xp with unknown D,
use 7 = 1+ xg, with small ball B.

BecD = 71<0 = NA(1)2>NA(0)

» Algorithm: Mark all balls B with A(1+ xg) > A(0)
» Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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ﬁ¢ MonotoniCity method (for simple test example)

Theorem (H./Ullrich, 2013)
Q~ D connected. o =1+ xp.

BeD < NA1+xg)2A(0).

For faster implementation:
BcD <« NA1)+iN(1)xg2ANA(o).

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

~r fast, rigorous, allows globally convergent implementation
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General case

Theorem (H./Uilrich, 2013) Let o € LT (2) be piecewise analytic.
The intersection of all hole-free C € Q2 with

Jag,a2>0: A(1+arxc) <A(o) <A(1-xc/a)

is identical to the (outer) support of o — 1.

» Result also holds with linearized condition
Ja>0: A1) +alN (L)xc <A(o) <A(1) -alN'(1)xc.

» Result covers indefinite case,
1
eg.,o=1+Xxp —35XD,
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Improving residuum-based methods

Theorem (H./Minh, preprint)
Let 2\ D connected. 0 =1+ xp.
» Pixel partition = U}, Pk

» Monotonicity tests
Bk € [0, 00] max. values s.t. BN (1)xp, > A(o) - A(1)

» R(k) e R®**: Discretization of lin. residual A(c) -A(1) -AN'(1)x

(e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem
|R(k)|F - min! s.t. k|p, =const., 0<k|p, <min{i, Bk}

possesses a unique solution x, and Py € supp k iff Py S supp(o —1).
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Phantom experiment

standard
method
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Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, submitted)

with
monotonicity
constraints
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Realistic data & Uncertainties

» Finite number of electrodes, CEM, noisy data A%(¢)

» Unknown background, e.g., 1 -e<op(x) <1+e€

» Anomaly with some minimal contrast to background, e.g.,
o(x) =o00(x) +k(x)xp, K(x)21

» Can we rigorously guarantee to find inclusion D?

H./Ullrich (IEEE TMI 2015):

Rigorous Resolution Guarantee o :
1 e6
» If D = @, methods return @. —— — es
» If D o> w; then it is detected. = | gg
(Here: 32 electrodes, € = 1%, § = 1.4%) €
€1

Q
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Conclusions

EIT is a highly ill-posed, non-linear inverse problem.
» Convergence of generic solvers unclear.

» But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction
» allow fast, rigorous, globally convergent implementations.
» work in any dimensions n > 2, full or partial boundary data.
» can enhance standard residual-based methods.

» vyield rigorous resolution guarantees for realistic settings.

Open problems / challenges:
» Method requires voltages on current-driven electrodes

(H., submitted: Missing electrode data may be replaced by interpolation.)

» Method applicable without definiteness, but more complicated.
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