
Monotonicity-based methods for elliptic
inverse coefficient problems

Bastian von Harrach
harrach@math.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

ICERM Topical Workshop on
Computational and Analytical Aspects of Image Reconstruction

Brown University, Providence, RI, USA
July 13–17, 2015

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems



Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary

▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.
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Mathematical Model

Electrical potential u(x) solves

∇ ⋅ (σ(x)∇u(x)) = 0 x ∈ Ω

Ω ⊂ Rn: imaged body, n ≥ 2
σ(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

σ∂νu(x)∣∂Ω: applied electric current
u(x)∣∂Ω: measured boundary voltage (potential)
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇ ⋅ (σ∇u) = 0, x ∈ Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω, σ∂νu∣∂Ω) ∶ u solves (1)} ?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2◇(∂Ω) → L2◇(∂Ω), g ↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g .
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Inversion of σ ↦ Λ(σ) = Λmeas?

Generic solvers for non-linear inverse problems:
▸ Linearize and regularize:

Λmeas = Λ(σ) ≈ Λ(σ0) + Λ′(σ0)(σ − σ0).
σ0: Initial guess or reference state (e.g. exhaled state)

↝ Linear inverse problem for σ
(Solve using linear regularization method, repeat for Newton-type algorithm.)

▸ Regularize and linearize:
E.g., minimize non-linear Tikhonov functional

∥Λmeas − Λ(σ)∥2 + α∥σ − σ0∥2 → min!

Advantages of generic solvers:
▸ Very flexible, additional data/unknowns easily incorporated
▸ Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)
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Inversion of σ ↦ Λ(σ) = Λmeas?

Problems with generic solvers

▸ High computational cost
(Evaluations of Λ(⋅) and Λ′(⋅) require PDE solutions)

▸ Convergence unclear
(Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)

▸ Convergence against true solution for exact meas. Λmeas?
(in the limit of infinite computation time)

▸ Convergence against true solution for noisy meas. Λδ
meas?

(in the limit of δ → 0 and infinite computation time)

▸ Global convergence? Resolution estimates for realistic noise?

D-bar method

▸ convergent 2D-implementation for σ ∈ C 2 and full bndry data
(Knudsen, Lassas, Mueller, Siltanen 2008)
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Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ, σ, σ0 pcw. analytic.

Λ′(σ0)κ = Λ(σ) − Λ(σ0) Ô⇒ supp∂Ωκ = supp∂Ω(σ − σ0)

supp∂Ω: outer support ( = supp + parts unreachable from ∂Ω)

↝ Linearized EIT equation contains correct shape information

Next slides: Idea of proof using monotonicity & localized potentials.
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Monotonicity

For two conductivities σ0, σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ≥ Λ(σ1)

This follows from

∫
Ω
(σ1 − σ0)∣∇u0∣2 ≥ ∫

∂Ω
g (Λ(σ0) − Λ(σ1))g ≥ ∫

Ω

σ0

σ1
(σ1 − σ0)∣∇u0∣2

for all solutions u0 of

∇ ⋅ (σ0∇u0) = 0, σ0∂νu0∣∂Ω = g .

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)
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Localized potentials

Theorem (H., 2008)

Let σ0 fulfill unique continuation principle (UCP),

D1 ∩D2 = ∅, and Ω ∖ (D1 ∪D2) be connected with Σ.

Then there exist solutions u
(k)
0 , k ∈ N with

∫
D1

∣∇u(k)0 ∣
2
dx →∞ and ∫

D2

∣∇u(k)0 ∣
2
dx → 0.

Σ

∣∇u0∣2 small

∣∇u0∣2 large Σ

∣∇u0∣2 small

∣∇u0∣2 large
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Proof of shape invariance under linearization

▸ Linearization: Λ′(σ0)κ = Λ(σ) − Λ(σ0)
▸ Monotonicity: For all ”reference solutions“ u0:

∫
Ω
(σ − σ0)∣∇u0∣2 dx

≥ ∫
∂Ω

g (Λ(σ0) − Λ(σ))g
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= −∫
∂Ω

g (Λ′(σ0)κ)g = ∫
Ω
κ∣∇u0∣2 dx

≥ ∫
Ω

σ0

σ
(σ − σ0)∣∇u0∣2 dx .

▸ Use localized potentials to control ∣∇u0∣2

↝ supp∂Ωκ = supp∂Ω(σ − σ0) ◻

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems



Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ, σ, σ0 pcw. analytic.

Λ′(σ0)κ = Λ(σ) − Λ(σ0) Ô⇒ supp∂Ωκ = supp∂Ω(σ − σ0)

supp∂Ω: outer support ( = supp + parts unreachable from ∂Ω)

↝ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, . . . )
in a fast, rigorous and globally convergent way?
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Monotonicity based imaging

▸ Monotonicity:

τ ≤ σ Ô⇒ Λ(τ) ≥ Λ(σ)

▸ Idea: Simulate Λ(τ) for test cond. τ and compare with Λ(σ).
(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, . . . )

▸ Inclusion detection: For σ = 1 + χD with unknown D,
use τ = 1 + χB , with small ball B.

B ⊆ D Ô⇒ τ ≤ σ Ô⇒ Λ(τ) ≥ Λ(σ)

▸ Algorithm: Mark all balls B with Λ(1 + χB) ≥ Λ(σ)
▸ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Monotonicity method (for simple test example)

Theorem (H./Ullrich, 2013)

Ω ∖D connected. σ = 1 + χD .

B ⊆ D ⇐⇒ Λ(1 + χB) ≥ Λ(σ).
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For faster implementation:

B ⊆ D ⇐⇒ Λ(1) + 1
2 Λ′(1)χB ≥ Λ(σ).

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

↝ fast, rigorous, allows globally convergent implementation
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Improving residuum-based methods

Theorem (H./Minh, preprint)

Let Ω ∖D connected. σ = 1 + χD .

▸ Pixel partition Ω = ⋃m
k=1 Pk

▸ Monotonicity tests

βk ∈ [0,∞] max. values s.t. βkΛ′(1)χPk
≥ Λ(σ) − Λ(1)

▸ R(κ) ∈ Rs×s : Discretization of lin. residual Λ(σ)−Λ(1)−Λ′(1)κ
(e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem

∥R(κ)∥F → min! s.t. κ∣Pk
= const., 0 ≤ κ∣Pk

≤ min{1
2 , βk}

possesses a unique solution κ, and Pk ⊆ suppκ iff Pk ⊆ supp(σ − 1).
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Phantom experiment

standard
method

with
monotonicity
constraints

Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, submitted)
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Realistic data & Uncertainties

▸ Finite number of electrodes, CEM, noisy data Λδ(σ)
▸ Unknown background, e.g., 1 − ε ≤ σ0(x) ≤ 1 + ε
▸ Anomaly with some minimal contrast to background, e.g.,

σ(x) = σ0(x) + κ(x)χD , κ(x) ≥ 1

▸ Can we rigorously guarantee to find inclusion D?

H./Ullrich (IEEE TMI 2015):

Rigorous Resolution Guarantee

▸ If D = ∅, methods return ∅.

▸ If D ⊃ ωi then it is detected.

(Here: 32 electrodes, ε = 1%, δ = 1.4%)
e1

e2

e3

e4

e5

e6

⋮
ωi

Ω
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Conclusions

EIT is a highly ill-posed, non-linear inverse problem.

▸ Convergence of generic solvers unclear.

▸ But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction

▸ allow fast, rigorous, globally convergent implementations.

▸ work in any dimensions n ≥ 2, full or partial boundary data.

▸ can enhance standard residual-based methods.

▸ yield rigorous resolution guarantees for realistic settings.

Open problems / challenges:

▸ Method requires voltages on current-driven electrodes
(H., submitted: Missing electrode data may be replaced by interpolation.)

▸ Method applicable without definiteness, but more complicated.

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems


