

Monotonicity-based methods for elliptic inverse coefficient problems

Bastian von Harrach

harrach@math.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

ICERM Topical Workshop on Computational and Analytical Aspects of Image Reconstruction Brown University, Providence, RI, USA July 13–17, 2015

Electrical impedance tomography (EIT)

- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject.

Mathematical Model

Electrical potential u(x) solves $\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in \Omega$

- $\Omega \subset \mathbb{R}^n$: imaged body, $n \ge 2$
 - $\sigma(x)$: conductivity
 - u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{\nu} u(x)|_{\partial\Omega}$: applied electric current $u(x)|_{\partial\Omega}$: measured boundary voltage (potential)

Calderón problem

Can we recover $\sigma \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\sigma \nabla u) = 0, \quad x \in \Omega \qquad (1)$$

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves } (1)\}?$$

Equivalent: Recover σ from **Neumann-to-Dirichlet-Operator**

$$\Lambda(\sigma): \ L^2_\diamond(\partial\Omega) \to L^2_\diamond(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where *u* solves (1) with $\sigma \partial_{\nu} u |_{\partial \Omega} = g$.

Inversion of $\sigma \mapsto \Lambda(\sigma) = \Lambda_{\text{meas}}$?

Generic solvers for non-linear inverse problems:

Linearize and regularize:

 $\Lambda_{\text{meas}} = \Lambda(\sigma) \approx \Lambda(\sigma_0) + \Lambda'(\sigma_0)(\sigma - \sigma_0).$

 $\sigma_{\rm 0}:$ Initial guess or reference state (e.g. exhaled state)

 \rightsquigarrow Linear inverse problem for σ

(Solve using linear regularization method, repeat for Newton-type algorithm.)

• Regularize and linearize:

E.g., minimize non-linear Tikhonov functional

 $\|\Lambda_{\text{meas}} - \Lambda(\sigma)\|^2 + \alpha \|\sigma - \sigma_0\|^2 \rightarrow \min!$

Advantages of generic solvers:

- Very flexible, additional data/unknowns easily incorporated
- Problem-specific regularization can be applied

(e.g., total variation penalization, stochastic priors, etc.)

Inversion of $\sigma \mapsto \Lambda(\sigma) = \Lambda_{\text{meas}}$?

Problems with generic solvers

High computational cost

(Evaluations of $\Lambda(\cdot)$ and $\Lambda'(\cdot)$ require PDE solutions)

- Convergence unclear (Validity of TCC/Scherzer-condition is a long-standing open problem for EIT.)
 - Convergence against true solution for exact meas. A_{meas}? (in the limit of infinite computation time)
 - Convergence against true solution for noisy meas. $\Lambda_{\text{meas}}^{\delta}$? (in the limit of $\delta \rightarrow 0$ and infinite computation time)
 - Global convergence? Resolution estimates for realistic noise?

D-bar method

• convergent 2D-implementation for $\sigma \in C^2$ and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)

Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010) Let κ , σ , σ_0 pcw. analytic.

$$\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$$

 $\operatorname{supp}_{\partial\Omega}$: outer support (= supp + parts unreachable from $\partial\Omega$)

→ Linearized EIT equation contains correct shape information
 Next slides: Idea of proof using monotonicity & localized potentials.

Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^{\infty}(\Omega)$:

$$\sigma_0 \leq \sigma_1 \quad \Longrightarrow \quad \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from

$$\int_{\Omega} (\sigma_1 - \sigma_0) |\nabla u_0|^2 \ge \int_{\partial \Omega} g \left(\Lambda(\sigma_0) - \Lambda(\sigma_1) \right) g \ge \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0) |\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\sigma_0 \nabla u_0) = 0, \quad \sigma_0 \partial_\nu u_0|_{\partial \Omega} = g.$$

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Localized potentials

Theorem (H., 2008) Let σ_0 fulfill unique continuation principle (UCP),

 $\overline{D_1} \cap \overline{D_2} = \emptyset$, and $\Omega \smallsetminus (\overline{D}_1 \cup \overline{D}_2)$ be connected with Σ . Then there exist solutions $u_0^{(k)}$, $k \in \mathbb{N}$ with

Proof of shape invariance under linearization

- Linearization: $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) \Lambda(\sigma_0)$
- Monotonicity: For all "reference solutions" *u*₀:

$$\int_{\Omega} (\sigma - \sigma_0) |\nabla u_0|^2 \, \mathrm{d}x$$

$$\geq \underbrace{\int_{\partial \Omega} g(\Lambda(\sigma_0) - \Lambda(\sigma)) g}_{= -\int_{\partial \Omega} g(\Lambda'(\sigma_0)\kappa) g} \geq \int_{\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0) |\nabla u_0|^2 \, \mathrm{d}x.$$

• Use localized potentials to control $|\nabla u_0|^2$ $\Rightarrow \operatorname{supp}_{\partial\Omega} \kappa = \operatorname{supp}_{\partial\Omega} (\sigma - \sigma_0)$

Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010) Let κ , σ , σ_0 pcw. analytic.

$$\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\sigma - \sigma_0)$$

 $\operatorname{supp}_{\partial\Omega}$: outer support (= supp + parts unreachable from $\partial\Omega$)

→ Linearized EIT equation contains correct shape information

Can we recover conductivity changes (anomalies, inclusions, ...) in a fast, rigorous and globally convergent way?

Monotonicity based imaging

Monotonicity:

$$\tau \leq \sigma \quad \Longrightarrow \quad \Lambda(\tau) \geq \Lambda(\sigma)$$

- Idea: Simulate Λ(τ) for test cond. τ and compare with Λ(σ). (Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, ...)
- Inclusion detection: For $\sigma = 1 + \chi_D$ with unknown *D*, use $\tau = 1 + \chi_B$, with small ball *B*.

$$B \subseteq D \implies \tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma)$$

- Algorithm: Mark all balls B with $\Lambda(1 + \chi_B) \ge \Lambda(\sigma)$
- Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems

Monotonicity method (for simple test example)

Theorem (H./Ullrich, 2013) $\Omega \setminus \overline{D}$ connected. $\sigma = 1 + \chi_D$.

$$B \subseteq D \quad \Longleftrightarrow \quad \Lambda(1 + \chi_B) \ge \Lambda(\sigma).$$

For faster implementation:

$$B \subseteq D \quad \Longleftrightarrow \quad \Lambda(1) + \frac{1}{2}\Lambda'(1)\chi_B \ge \Lambda(\sigma).$$

Proof: Monotonicity & localized potentials

Shape can be reconstructed by linearized monotonicity tests.

→ fast, rigorous, allows globally convergent implementation

Improving residuum-based methods

Theorem (H./Minh, preprint) Let $\Omega \setminus \overline{D}$ connected. $\sigma = 1 + \chi_D$.

- Pixel partition $\Omega = \bigcup_{k=1}^{m} P_k$
- Monotonicity tests

 $\beta_k \in [0, \infty]$ max. values s.t. $\beta_k \Lambda'(1) \chi_{P_k} \ge \Lambda(\sigma) - \Lambda(1)$

 R(κ) ∈ R^{s×s}: Discretization of lin. residual Λ(σ) − Λ(1) − Λ'(1)κ (e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem $||R(\kappa)||_{\mathsf{F}} \rightarrow \min!$ s.t. $\kappa|_{P_k} = \text{const.}, \ 0 \le \kappa|_{P_k} \le \min\{\frac{1}{2}, \beta_k\}$ possesses a unique solution κ , and $P_k \subseteq \operatorname{supp} \kappa$ iff $P_k \subseteq \operatorname{supp}(\sigma - 1)$.

B. Harrach: Monotonicity-based methods for elliptic inverse coefficient problems

Phantom experiment

Enhancing standard methods by monotonicity-based constraints (Zhou/H./Seo, submitted)

University of Stuttgart Germany

Realistic data & Uncertainties

- Finite number of electrodes, CEM, noisy data $\Lambda^{\delta}(\sigma)$
- Unknown background, e.g., $1 \epsilon \leq \sigma_0(x) \leq 1 + \epsilon$
- Anomaly with some minimal contrast to background, e.g., $\sigma(x) = \sigma_0(x) + \kappa(x)\chi_D, \quad \kappa(x) \ge 1$
- Can we rigorously guarantee to find inclusion D?

H./Ullrich (IEEE TMI 2015): Rigorous Resolution Guarantee

- If $D = \emptyset$, methods return \emptyset .
- If $D \supset \omega_i$ then it is detected.

(Here: 32 electrodes, $\epsilon = 1\%$, $\delta = 1.4\%$)

Conclusions

EIT is a highly ill-posed, non-linear inverse problem.

- Convergence of generic solvers unclear.
- But: Shape reconstruction in EIT is essentially a linear problem.

Monotonicity-based methods for EIT shape reconstruction

- allow fast, rigorous, globally convergent implementations.
- work in any dimensions $n \ge 2$, full or partial boundary data.
- can enhance standard residual-based methods.
- yield rigorous resolution guarantees for realistic settings.

Open problems / challenges:

- Method requires voltages on current-driven electrodes (H., submitted: Missing electrode data may be replaced by interpolation.)
- Method applicable without definiteness, but more complicated.