
Inverse problems and medical imaging

Bastian von Harrach
harrach@math.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

Mathematical Colloquium
Faculty of Mathematics, University of Duisburg-Essen

May 13, 2015

B. Harrach: Inverse problems and medical imaging



Introduction to inverse problems
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Laplace’s demon

Laplace’s demon: (Pierre Simon Laplace 1814)

”An intellect which ... would know
all forces ... and all positions of all items,

if this intellect were also vast enough to
submit these data to analysis ...

for such an intellect nothing would be
uncertain and the future just like the past

would be present before its eyes.”
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Computational Science

Computational Science / Simulation Technology:

If we know all necessary parameters, then we can numerically predict
the outcome of an experiment (by solving mathematical formulas).

Goals:

▸ Prediction

▸ Optimization

▸ Inversion/Identification
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Computational Science

Generic simulation problem:

Given input x calculate outcome y = F (x).

x ∈ X : parameters / input
y ∈ Y : outcome / measurements

F ∶ X → Y : functional relation / model

Goals:

▸ Prediction: Given x , calculate y = F (x).
▸ Optimization: Find x , such that F (x) is optimal.

▸ Inversion/Identification: Given F (x), calculate x .
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Example: X-ray computerized tomography (CT)

Nobel Prize in Physiology or Medicine 1979:
Allan M. Cormack and Godfrey N. Hounsfield
(Photos: Copyright ©The Nobel Foundation)

Idea: Take x-ray images from several directions
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Computerized tomography (CT)
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Measurements

Direct problem: Simulate/predict the measurements
(from knowledge of the interior density distribution)

Given x calculate F (x) = y !

Inverse problem: Reconstruct/image the interior distribution
(from taking x-ray measurements)

Given y solve F (x) = y !
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Computerized tomography

▸ CT forward operator F ∶ x ↦ y linear

↝ Evaluation of F is simple matrix vector multiplication
(after discretizing image and measurements as long vectors)

Simple low resolution example:

F↦
F−1

↤

Problem: Matrix F invertible, but ∥F−1∥ very large.
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Ill-posedness

▸ In the continuous case: F−1 not continuous
▸ After discretization: ∥F−1∥ very large

F↦

↧ add 1% noise

F−1

↤

Are stable reconstructions impossible?
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Ill-posedness

Generic linear ill-posed inverse problem

▸ F ∶ X → Y bounded and linear, X ,Y Hilbert spaces,

▸ F injective, F−1 not continuous,

▸ True solution and noise-free measurements: F x̂ = ŷ ,

▸ Real measurements: y δ with ∥y δ − ŷ∥ ≤ δ

F−1y δ /→ F−1ŷ = x̂ for δ → 0.

Even the smallest amount of noise will corrupt the reconstructions.

B. Harrach: Inverse problems and medical imaging



Regularization

Generic linear Tikhonov regularization

Rα = (F ∗F + αI )−1F ∗

↝ Rα continuous, Rαy
δ minimizes

∥Fx − y δ∥2 + α∥x∥2 → min!

Theorem. Choose α ∶= δ. Then for δ → 0,

Rδy
δ → F−1ŷ .
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Regularization

Theorem. Choose α ∶= δ. Then for δ → 0,

Rδy
δ → F−1ŷ .

Proof. Show that ∥Rα∥ ≤ 1√
α

and apply

∥Rαy δ − F−1ŷ∥ ≤ ∥Rα(y δ − y)∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤∥Rα∥δ

+ ∥Rαy − F−1y∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 for α→ 0

.

Inexact but continuous reconstruction (regularization)
+ Information on measurement noise (parameter choice rule)
= Convergence
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Example

x̂ ŷ = F x̂ y δ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1y δ

(F ∗F + δI )−1F ∗y δ
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Electrical impedance tomography
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Electrical impedance tomography (EIT)

▸ Apply electric currents on subject’s boundary
▸ Measure necessary voltages

↝ Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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Mathematical Model

Electrical potential u(x) solves

∇ ⋅ (σ(x)∇u(x)) = 0 x ∈ Ω

Ω ⊂ Rn: imaged body, n ≥ 2
σ(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

σ∂νu(x)∣∂Ω: applied electric current
u(x)∣∂Ω: measured boundary voltage (potential)
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Calderón problem

Can we recover σ ∈ L∞+ (Ω) in

∇ ⋅ (σ∇u) = 0, x ∈ Ω (1)

from all possible Dirichlet and Neumann boundary values

{(u∣∂Ω, σ∂νu∣∂Ω) ∶ u solves (1)} ?

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

Λ(σ) ∶ L2
◇(∂Ω)→ L2

◇(∂Ω), g ↦ u∣∂Ω,

where u solves (1) with σ∂νu∣∂Ω = g .
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Challenges

EIT: Recover σ from Λ(σ)
▸ Uniqueness

▸ Is σ uniquely determined from the NtD Λ(σ)?
▸ Non-linearity and ill-posedness

▸ Reconstruction algorithms to determine σ from Λ(σ)?
▸ Local/global convergence results?

▸ Realistic data
▸ What can we recover from real measurements?

(finite number of electrodes, realistic electrode models, . . . )

▸ Measurement and modelling errors? Resolution?

Next: A simple strategy (monotonicity + localized potentials)
to attack these challenges.
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Monotonicity

For two conductivities σ0, σ1 ∈ L∞(Ω):

σ0 ≤ σ1 Ô⇒ Λ(σ0) ≥ Λ(σ1)

This follows from

∫
Ω
(σ1 − σ0)∣∇u0∣2 ≥ ∫

∂Ω
g (Λ(σ0) − Λ(σ1))g ≥ ∫

Ω

σ0

σ1
(σ1 − σ0)∣∇u0∣2

for all solutions u0 of

∇ ⋅ (σ0∇u0) = 0, σ0∂νu0∣∂Ω = g .

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Can we prove uniqueness by controlling ∣∇u0∣2 ?
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Localized potentials

Theorem (H., 2008)

Let σ0 fulfill unique continuation principle (UCP),

D1 ∩D2 = ∅, and Ω ∖ (D1 ∪D2) be connected with ∂Ω.

Then there exist solutions u
(k)
0 , k ∈ N with

∫
D1

∣∇u(k)0 ∣
2
dx →∞ and ∫

D2

∣∇u(k)0 ∣
2
dx → 0.

Σ

|∇u0|2 small

|∇u0|2 large Σ

|∇u0|2 small

|∇u0|2 large
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Consequences

▸ Back to Calderón: Let Λ(σ0) = Λ(σ1), σ0 fulfills (UCP).

▸ By monotonicity,

∫
Ω
(σ1 − σ0)∣∇u0∣2 dx ≥ 0 ≥ ∫

Ω

σ0

σ1
(σ1 − σ0)∣∇u0∣2 dx ∀u0

▸ Assume: ∃ neighbourhood U, connected to bndry ∂Ω where

σ1 ≥ σ0 but σ1 ≠ σ0.

↝ Potential with localized energy in U contradicts monotonicity

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Druskin 1982+85, Kohn/Vogelius, 1984+85)

Calderón problem is uniquely solvable for piecw.-anal. conductivities.
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Monotonicity based imaging

▸ Monotonicity:

τ ≤ σ Ô⇒ Λ(τ) ≥ Λ(σ)

▸ Idea: Simulate Λ(τ) for test cond. τ and compare with Λ(σ).
(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, . . . )

▸ Inclusion detection: For σ = 1 + χD with unknown D,
use τ = 1 + χB , with small ball B.

B ⊆ D Ô⇒ τ ≤ σ Ô⇒ Λ(τ) ≥ Λ(σ)

▸ Algorithm: Mark all balls B with Λ(1 + χB) ≥ Λ(σ)
▸ Result: upper bound of D.

Only an upper bound? Converse monotonicity relation?
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Converse monotonicity relation

Theorem (H./Ullrich, 2013)

Ω ∖D connected. σ = 1 + χD .

B ⊆ D ⇐⇒ Λ(1 + χB) ≥ Λ(σ).
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↝ Monotonicity method detects exact shape.

For faster implementation:

B ⊆ D ⇐⇒ Λ(1) + 1
2 Λ′(1)χB ≥ Λ(σ).

↝ Linearized monotonicity method detects exact shape.

Proof: Monotonicity + localized potentials
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Improving standard methods

▸ Standard EIT reconstruction methods
▸ based on minimizing regularized residuum functional

∥Λ(σ) − Λmeasured∥2 + regularization→ min!

▸ aim to reconstruct conductivity image σ(x).
Problem: No rigorous justification, no convergence result.

▸ Monotonicity-based inclusion/shape detection
▸ rigorously justified, globally convergent,
▸ only recover inclusion shape.

Can we improve standard residual-based methods
using rigorous shape reconstruction methods?
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Phantom experiment

standard
method

with
monotonicity
constraints

Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, submitted)
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Conclusions

Computational science and inverse problems

▸ Computational science is the core of many new advances.

▸ Inverse problems is the core of new medical imaging systems.

For inverse problems in medical imaging

▸ Theoretical uniqueness questions are crucial and non-trivial.

▸ Problems are usually non-linear and ill-posed.

▸ Convergence of reconstruction algorithms often unknown.

For inverse coefficient problems in elliptic PDEs (such as EIT)

▸ Monotonicity & loc. potentials help to attack these challenges.
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