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Introduction to inverse problems
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fﬁ Laplace’s demon

Laplace's demon: (Pierre Simon Laplace 1814)

"An intellect which ... would know
all forces ... and all positions of all items,

if this intellect were also vast enough to
submit these data to analysis ...

for such an intellect nothing would be
uncertain and the future just like the past
would be present before its eyes.”
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o Computational Science

Computational Science / Simulation Technology:

If we know all necessary parameters, then we can numerically predict
the outcome of an experiment (by solving mathematical formulas).

Goals:
» Prediction
» Optimization

» Inversion/Identification
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o Computational Science

Generic simulation problem:

Given input x calculate outcome y = F(x).

x € X: parameters / input
y €Y: outcome / measurements
F: X - Y: functional relation / model

Goals:
» Prediction: Given x, calculate y = F(x).
» Optimization: Find x, such that F(x) is optimal.

» Inversion/Identification: Given F(x), calculate x.
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Example: X-ray computerized tomography (CT)

Nobel Prize in Physiology or Medicine 1979:
Allan M. Cormack and Godfrey N. Hounsfield
(Photos: Copyright (©)The Nobel Foundation)

Idea: Take x-ray images from several directions

Detector
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Computerized tomography (CT)

(Image: Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wiss. Rechnens, Teubner 2002)
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Image Measurements
Direct problem: Simulate/predict the measurements

(from knowledge of the interior density distribution)

Given x calculate F(x) = y!

Inverse problem: Reconstruct/image the interior distribution
(from taking x-ray measurements)

Given y solve F(x) =y!
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Computerized tomography
» CT forward operator F: x — y is linear
~ Evaluation of F is simple matrix vector multiplication

(after discretizing image and measurements as long vectors)

Simple low resolution example:

Problem: Matrix F invertible, but |F~Y|| very large.
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lll-posedness

» In the continuous case: F~1 not continuous
» After discretization: |F~!| very large

Are stable reconstructions impossible?
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lll-posedness

Generic linear ill-posed inverse problem
» F: X - Y bounded and linear, X, Y Hilbert spaces,
» F injective, F~! not continuous,
» True solution and noise-free measurements: FX =y,

» Real measurements: y° with |y® - §| < ¢

FLY 4 Flp=% for 6&-0.

Even the smallest amount of noise will corrupt the reconstructions.
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e Regularization

Generic linear Tikhonov regularization
Ro=(F*F +al)F*
~ R, continuous, ,‘:\’ay‘S minimizes

|Fx = y°|? + || x| 2 > min!
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Theorem. Choose ov:=§. Then for 6 — 0,

Rsy’ = F7'y.
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e Regularization
Theorem. Choose «v:=§. Then for § — 0,
Rsy’ - F7ly.
Proof. Show that |R,]| < % and apply

IRay’ = F9| < [Ra(y’ = y)| + |Ray — F Ly .

<||Ra|é —0 for aa = 0

Inexact but continuous reconstruction (regularization)
+ Information on measurement noise (parameter choice rule)
= Convergence
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(F*F+51)tF*y?

B. Harrach: Inverse problems and medical imaging



Electrical impedance tomography
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Electrical impedance tomography (EIT)

» Apply electric currents on subject’s boundary
» Measure necessary voltages
~ Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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MF-System Goe-MF I

Electric current strength: 5—500mA,,,s, 44 images/second,
CE certified by Viasys Healthcare, approved for clinical research
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e Mathematical Model

Electrical potential u(x) solves
V-(o(x)Vu(x))=0 xeQ

QcR™ imaged body, n>2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

c,u(x)|aq: applied electric current
u(x)|sq: measured boundary voltage (potential)
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'wa Calderdn problem
Can we recover o € L°(€2) in
V-(oVu)=0, xeQ (1)
from all possible Dirichlet and Neumann boundary values

{(uloq,00,ulsq) : wusolves (1)}7

Equivalent: Recover ¢ from Neumann-to-Dirichlet-Operator
No): L3(99) - L3(09), g = uloa,

where u solves (1) with 00, ulsq = g.
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Inversion of o = A(0) = Ameas?

Generic solvers for non-linear inverse problems:
» Linearize and regularize:
!
Ameas = N(0) » N(og) + N (09) (0 — 09).

op: Initial guess or reference state (e.g. exhaled state)

~ Linear inverse problem for o

(Solve, e.g., using linear Tikhonov regul., repeat for Newton-type algorithm.)
» Regularize and linearize:

E.g., minimize non-linear Tikhonov functional

[ Ameas = A(0)|? + a|lo = o] > > min!

Generic and flexible, but high comput. cost and convergence unclear

(PhD-project of Dominik Garmatter: Reduce comput. costs by model reduction)
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’ Linearization and shape reconstruction

Theorem (H./Seo, SIAM J. Math. Anal. 2010)
Let k, o, og pcw. analytic.

N(oo)k =N(o)-Noo) == suppygk = suppyo (o - oo)

Suppgq: outer support ( =supp + parts unreachable from 9Q)

» Linearized EIT equation contains correct shape information

» For the shape reconstruction problem
A(o) = suppgq (o - 00)

fast, rigorous and globally convergent method seem possible.

Theorem heavily inspired by Factorization Method (Kirsch/Hanke/Briihl 1998/99)

which is fast and rigorous (but for which convergence is unclear).
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MonotoniCity method (for simple test example)

Theorem (H. Ullrich, 2013)
QD connected. o0 =1+ xp.

BcD <= NA1+xg)2NA(0).

For faster implementation:

BcD <« NA1)+iN(L)xg>ANAo).

Shape can be reconstructed by linearized monotonicity tests.

~ fast, rigorous, allows globally convergent implementation
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Improving residuum-based methods

Theorem (H./Minh, preprint)
Let 2\ D connected. 0 =1+ xp.
» Pixel partition = U}, Pk

» Monotonicity tests
Bk € [0, 00] max. values s.t. BN (1)xp, > A(o) - A(1)

» R(k) e R®**: Discretization of lin. residual A(c) -A(1) -AN'(1)x

(e.g. Galerkin proj. to fin.-dim. space)

Then, the monotonicity-constrained residuum minimization problem
|R(k)|F - min! s.t. k|p, =const., 0<k|p, <min{i, Bk}

possesses a unique solution x, and Py € supp k iff Py S supp(o —1).
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Phantom experiment

standard
method
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Enhancing standard methods by monotonicity-based constraints
(Zhou/H./Seo, submitted)

with
monotonicity
constraints

B. Harrach: Inverse problems and medical imaging



University of Stuttgart

Germany.

Conclusions

Computational science and inverse problems
» Computational science is the core of many new advances.

» Inverse problems is the core of new medical imaging systems.

For ill-posed inverse problems
» Regularization is required for convergent algorithms.

» Regularization can also incorporate additional information

(e.g., total variation penalization, stochastic priors, etc.)

For the non-linear ill-posed inverse problem of EIT
» Convergence of standard regul. techniques is still unclear.

» Monotonicity-based regularization allow fast, rigorous, and
globally convergent reconstruction of shape information.
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