

Combining Frequency-difference and Ultrasound-modulated EIT

Bastian von Harrach harrach@math.uni-stuttgart.de

(joint work with Eunjung Lee and Marcel Ullrich)

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

AIP - Applied Inverse Problems 2015 Helsinki, Finland, May 25–29, 2015.

Electrical impedance tomography (EIT)

- Apply electric currents on subject's boundary
- Measure necessary voltages
- → Reconstruct conductivity inside subject.

Images from BMBF-project on EIT

(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)

Mathematical Model

Complex electrical potential u(x) solves $\nabla \cdot (\gamma_{\omega}(x) \nabla u(x)) = 0 \quad x \in \Omega$

- $\Omega \subset \mathbb{R}^n$: imaged body, $n \ge 2$
 - $\gamma_{\omega}(x)$: complex conductivity at frequency $\omega \ge 0$
 - u(x): complex electrical potential

Idealistic model for boundary measurements (continuum model):

 $\sigma \partial_{\nu} u(x)|_{\partial\Omega}$: applied electric current $u(x)|_{\partial\Omega}$: measured boundary voltage (potential)

Inverse problem

How can we recover $\gamma_{\omega} \in L^{\infty}_{+}(\Omega)$ in

$$\nabla \cdot (\gamma_{\omega} \nabla u) = 0, \quad x \in \Omega \qquad (1)$$

from all possible Dirichlet and Neumann boundary values

 $\{(u|_{\partial\Omega}, \sigma\partial_{\nu}u|_{\partial\Omega}) : u \text{ solves } (1)\}?$

Equivalent: Recover γ_{ω} from Neumann-to-Dirichlet-Operator

$$\Lambda(\gamma_{\omega}): \ L^{2}_{\diamond}(\partial\Omega) \to L^{2}_{\diamond}(\partial\Omega), \quad g \mapsto u|_{\partial\Omega},$$

where *u* solves (1) with $\sigma \partial_{\nu} u |_{\partial \Omega} = g$.

University of Stuttgart Germany

Inclusion detection

Consider conductivity anomaly in homogenous medium

$$\gamma_{\omega}(x) = \begin{cases} \gamma_{\omega}^{(\Omega)} = \sigma_{\Omega} + i\omega\epsilon_{\Omega} & \text{for } x \in \Omega \\ \gamma_{\omega}^{(D)} = \sigma_{D} + i\omega\epsilon_{D} & \text{for } x \in D \end{cases}$$

with constant $\sigma_{\Omega}, \sigma_D, \epsilon_{\Omega}, \epsilon_D > 0$ and $\Omega \setminus \overline{D}$ connected.

• Anomaly-free case: $\hat{\gamma}_{\omega} \coloneqq \gamma_{\omega}^{(\Omega)} = \text{const.}$

Goal: Detect anomaly $D \coloneqq \operatorname{supp}_{\partial\Omega}(\gamma_{\omega} - \hat{\gamma}_{\omega})$ from NtD $\Lambda(\gamma_{\omega})$.

Linearization

Goal: Detect anomaly $D \coloneqq \operatorname{supp}_{\partial\Omega}(\gamma_{\omega} - \hat{\gamma}_{\omega})$ from NtD $\Lambda(\gamma_{\omega})$.

- One-step linearization methods e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009) Solve $\Lambda'(\hat{\gamma}_{\omega})\kappa \approx \Lambda(\gamma_{\omega}) - \Lambda(\hat{\gamma}_{\omega})$ to obtain $\kappa \approx \gamma_{\omega} - \hat{\gamma}_{\omega}$.
- Exact shape reconstruction by one-step linearization (H./Seo 2010, for $\omega = 0$ and piecw. anal. conductivities) $\Lambda'(\hat{\gamma}_0)\kappa = \Lambda(\gamma_0) - \Lambda(\hat{\gamma}_0) \implies \operatorname{supp}_{\partial\Omega}\kappa = \operatorname{supp}_{\partial\Omega}(\gamma_0 - \hat{\gamma}_0)$

Modelling errors

Major challenge: Modelling errors affect numerical calculations (boundary shape, electrode positions, ...)

Solve $\Lambda'(\hat{\gamma}_{\omega})\kappa \approx \Lambda(\gamma_{\omega}) - \Lambda(\hat{\gamma}_{\omega})$ to obtain $\kappa \approx \gamma_{\omega} - \hat{\gamma}_{\omega}$.

Absolute data EIT:

 $\begin{array}{lll} & \Lambda(\gamma_\omega): & \text{measured} \\ & \Lambda(\hat{\gamma}_\omega), \ \Lambda'(\hat{\gamma}_\omega): & \text{obtained from numerical forward solver} \end{array}$

- Extremely sensitive to modeling errors
- Practical feasibility is a highly discussed topic

Time-difference EIT

Solve $\Lambda'(\hat{\gamma}_0)\kappa \approx \Lambda(\gamma_0) - \Lambda(\hat{\gamma}_0)$ to obtain $\kappa \approx \gamma_0 - \hat{\gamma}_0$.

Time-difference EIT:

- $\begin{array}{lll} \Lambda(\gamma_0), \ \Lambda(\hat{\gamma}_0) \colon & \mbox{measured} \\ \Lambda'(\hat{\gamma}_0) \colon & \mbox{obtained from numerical forward solver} \end{array}$
 - Requires anomaly-free measurement
 - Less sensitive to modeling errors

Weighted frequency-difference EIT

Solve $\Lambda'(\gamma_0)\kappa \approx \alpha \Lambda(\gamma_\omega) - \Lambda(\gamma_0)$ to obtain $\kappa \approx \alpha \gamma_\omega - \gamma_0$.

 $(\omega > 0, \ \alpha \coloneqq \gamma_{\omega}^{(\Omega)} / \gamma_{0}^{(\Omega)}$ ratio of background conductivities.)

Weighted frequency-difference EIT:

 $\begin{array}{lll} \Lambda(\gamma_{\omega}), \ \Lambda(\gamma_{0}), \ \alpha &: & \text{measured} \\ \Lambda'(\gamma_{0}) &: & \text{obtained from numerical forward solver} \end{array}$

- No anomaly-free measurement required
- Less sensitive to modeling errors
- Requires contrast condition: $(\epsilon_D \sigma_\Omega \epsilon_\Omega \sigma_D \neq 0 \rightsquigarrow \alpha \gamma_\omega \gamma_0 \neq 0)$

(H./Seo/Woo, IEEE Trans. Med. Imaging, 2010)

US-modulated EIT

Ultrasound-modulated EIT:

- Change conductivity in small area: $\gamma_0 \rightsquigarrow \gamma_0(1 + \beta \chi_B)$
- Measure $\Lambda(\gamma_0(1 + \beta \chi_B))$

Can we locate anomaly D just from measurements (e.g., from $\Lambda(\gamma_{\omega}), \Lambda(\gamma_0), \Lambda(\gamma_0(1 + \beta\chi_B)), ...)$ without any numerical forward solver, without knowing electrode position, boundary shape, ...

US-modulated fdEIT: continuous data

Theorem

Let $\epsilon_D \sigma_\Omega - \epsilon_\Omega \sigma_D > 0$ (contrast condition of weighted fdEIT). For each suff. small $\beta > 0$ and every open set $B \subseteq \Omega$

$$B \subseteq D \quad \Longleftrightarrow \quad \Re(\alpha \Lambda(\gamma_{\omega})) \leq \Lambda((1 + \beta \chi_B)\gamma_0).$$

 $(\text{For } \epsilon_D \sigma_\Omega - \epsilon_\Omega \sigma_D < 0: \quad B \subseteq D \quad \Longleftrightarrow \ \Re\left(\alpha \Lambda(\gamma_\omega)\right) \ge \Lambda((1 - \beta \chi_B)\gamma_0).)$

 $\begin{aligned} \Re(\alpha \Lambda(\gamma_{\omega})) - \Lambda(\gamma_{0}): & (\text{weighted}) \text{ change of frequency} \\ \Lambda((1 + \beta \chi_{B})\gamma_{0}) - \Lambda(\gamma_{0}): & \text{US-modulation focussed to set } B \end{aligned}$

Comparing the effect of a change of frequency to that of a focussed US-modulation shows whether the US-focus is inside an anomaly.

US-modulated fdEIT: continuous data

Theorem

Let $\epsilon_D \sigma_\Omega - \epsilon_\Omega \sigma_D > 0$ (contrast condition of weighted fdEIT). For each suff. small $\beta > 0$ and every open set $B \subseteq \Omega$

$$B \subseteq D \quad \Longleftrightarrow \quad \Re(\alpha \Lambda(\gamma_{\omega})) \leq \Lambda((1 + \beta \chi_B) \gamma_0).$$

$$(\text{For }\epsilon_D\sigma_\Omega - \epsilon_\Omega\sigma_D < 0: \quad B \subseteq D \iff \mathfrak{R}(\alpha \Lambda(\gamma_\omega)) \ge \Lambda((1 - \beta\chi_B)\gamma_0).)$$

- $\Lambda(\gamma_{\omega})$ and $\Lambda((1 + \beta \chi_B)\gamma_0)$ can be measured.
- α can be estimated as in fdEIT (by minimizing $\Re(\alpha \Lambda(\gamma_{\omega})) \Lambda(\gamma_{0}))$).
- \rightsquigarrow No forward calculations, knowing Ω is not required

Proof. Monotony & localized potentials

US-modulated fdEIT: electrode measurements

 $R(\gamma_{\omega})$: Matrix of electrode measurements (shunt model)

Theorem

Let $\epsilon_D \sigma_\Omega - \epsilon_\Omega \sigma_D > 0$ (contrast condition of weighted fdEIT). For each suff. small $\beta > 0$ and every open set $B \subseteq \Omega$

$$B \subseteq D \implies \Re(\alpha R(\gamma_{\omega})) \leq R((1 + \beta \chi_B)\gamma_0).$$

(For $\epsilon_D \sigma_\Omega - \epsilon_\Omega \sigma_D < 0$: $B \subseteq D \iff \Re(\alpha R(\gamma_\omega)) \ge R((1 - \beta \chi_B)\gamma_0).)$

- ▶ Roughly speaking, "←" holds if enough electrodes are used.
- Measure $R(\gamma_{\omega})$, $R(\gamma_0)$, $R((1 + \beta \chi_B)\gamma_0)$. Estimate α as before.
- → No forward calculations.

Anomaly can be located without knowing the electrode position.

Numerical results

Example: $\gamma_0 \coloneqq 1 + \chi_D$, $\gamma_\omega \coloneqq 1 + \chi_D + i\omega$.

$$\begin{aligned} \mathfrak{R}(\alpha R(\gamma_{\omega})) \geq R((1 - \beta \chi_{B_{j}})\gamma_{0}) & \text{ for } j = 2\\ \mathfrak{R}(\alpha R(\gamma_{\omega})) \nleq R((1 - \beta \chi_{B_{j}})\gamma_{0}) & \text{ for } j \in \{1, 3, 4, 5\} \end{aligned}$$

Numerical results

Example: $\gamma_0 \coloneqq 1$, $\gamma_\omega \coloneqq 1 + (2 - \chi_D)i\omega$.

red: true inclusion gray: all balls with $\Re(\alpha R(\gamma_{\omega})) \ge R((1 - \beta \chi_{B_i})\gamma_0)$

Conclusions

In electrical impedance tomography,

- modeling errors present a major challenge,
- time difference data reduces the sensitivity to modelling errors,
- weighted-fdEIT data extends this robustness to static settings.

New idea: Combining w-fdEIT with US-modulated EIT potentially

- eliminates all model dependance
- allows to detect anomaly directly from measurements
 - without any forward calculations
 - without knowing domain shape
 - without knowing electrode position