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Inverse Electromagnetics

Inverse Electromagnetics:

I Generate EM field
(drive excitation current through coil)

I Measure EM field
(induced voltages in meas. coil)

I Gain information from measurements

Applications:

I Metal detection (buried conductor)

I Non-destructive testing
(crack in metal, metal in concrete)

I . . .
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Maxwell’s equations

Classical Electromagnetics: Maxwell’s equations

curlH = ε∂tE + σE + J in R3×]0,T [

curlE = −µ∂tH in R3×]0,T [

E (x , t): Electric field ε(x): Permittivity
H(x , t): Magnetic field µ(x): Permeability
J(x , t): Excitation current σ(x): Conductivity

Knowing J, σ, µ, ε + init. cond. determines E and H.
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Eddy currents

Maxwell’s equations

curlH = ε∂tE + σE + J in R3×]0,T [

curlE = −µ∂tH in R3×]0,T [

Eddy current approximation: Neglect displacement currents ε∂tE

I Justified for low-frequency excitations
(Alonso 1999, Ammari/Buffa/Nédélec 2000)

 ∂t(σE ) + curl

(
1

µ
curlE

)
= −∂tJ in R3×]0,T [
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Where’s Eddy?

I σ = 0: (Quasi-)Magnetostatics

curl

(
1

µ
curlE

)
= −∂tJ

Excitation ∂tJ instantly generates magn. field 1
µ curlE = −∂tH.

I σ 6= 0: Eddy currents

∂t(σE ) + curl

(
1

µ
curlE

)
= −∂tJ

∂tJ generates changing magn. field + currents inside conductor

Induced currents oppose what created them (Lenz law)
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Parabolic-elliptic equations

∂t(σE ) + curl

(
1

µ
curlE

)
= −∂tJ in R3×]0,T [

I parabolic inside conductor Ω = supp(σ)

I elliptic outside conductor

Scalar example: (σu)t = uxx , u(·, 0) = 0, ux(−2, ·) = ux(2, ·) = 1.
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Vanishing conductivity limit

Parabolic-elliptic eddy current equation

∂t(σE ) + curl

(
1

µ
curlE

)
= −∂tJ in R3×]0,T [

Vanishing conductivity limit required for
I Numerical implementation by parabolic regularization

Replace σ(x) by σε(x) := min{σ(x), ε}, ε > 0.

I Inversion by linearization: Find σ from measurements of E by

linearizing E w.r.t. σ around σ = 0.

In this talk: How does the solution change
I if a parabolic equation becomes elliptic?
I if an elliptic equation becomes a little bit parabolic?
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Standard approach

∂t(σE ) + curl

(
1

µ
curlE

)
= −∂tJ in R3×]0,T [

Standard approach: Decouple elliptic and parabolic part
(e.g. Bossavit 1999, Acevedo/Meddahi/Rodriguez 2009)

Find (ER3\Ω,EΩ) ∈ HR3\Ω × HΩ s.t.

I EΩ solves parabolic equation + init. cond.

I ER3\Ω solves elliptic equation

I interface conditions are satisfied

Problem: Theory depends on Ω = suppσ and inf σ|Ω.

Vanishing conductivity limits require unified approach.
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Rigorous formulation

Rigorous formulation: Let µ ∈ L∞+ , σ ∈ L∞, σ ≥ 0,

Jt ∈ L2(0,T ,W (curl)′) with div Jt = 0

E0 ∈ L2(R3)3 with div(σE0) = 0.

For E ∈ L2(0,T ,W (curl)) the eddy current equations

∂t(σE ) + curl

(
1

µ
curlE

)
= −Jt in R3×]0,T [

√
σE (x , 0) =

√
σ(x)E0(x) in R3

are well-defined and (if solvable) uniquely determine curlE ,
√
σE .
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Natural variational formulation

Natural unified variational formulation (E0 = 0 for simplicity):

Find E ∈ L2(0,T ,W (curl)) that solves∫ T

0

∫
R3

(
σE · ∂tΦ−

1

µ
curlE · curl Φ

)
=

∫ T

0

∫
R3

Jt · Φ.

for all smooth Φ with Φ(·,T ) = 0.

I equivalent to eddy current equation

I not coercive, does not yield existence results
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Gauged formulation

Gauged unified variational formulation (E0 = 0 for simplicity)

Find divergence-free E ∈ L2(0,T ,W 1(R3)) that solves∫ T

0

∫
R3

(
σE · ∂tΦ−

1

µ
curlE · curl Φ

)
=

∫ T

0

∫
R3

Jt · Φ.

for all smooth divergence-free Φ with Φ(·,T ) = 0.

I coercive, yields existence and continuity results

I not equivalent to eddy current equation
(σ 6= const. div σE 6= σ div E )

I does not determine true solution up to gauge (curl-free) field
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Coercive unified formulation

How to obtain coercive + equivalent unified formulation?

I Ansatz E = A +∇ϕ with divergence-free A.
(almost the standard (A, ϕ)-formulation with Coulomb gauge)

I Consider ∇ϕ = ∇ϕA as function of A by solving

div σ∇ϕA = − div σA.

( div σE = 0).

I Obtain coercive formulation for A
(Lions-Lax-Milgram Theorem  Solvability and continuity results)

I A determines E
(more precisely: curlE and

√
σE )
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Unified variational formulation

Unified variational formulation (Arnold/H., SIAP, 2012)

Find divergence-free A ∈ L2(0,T ,W 1(R3)) that solves∫ T

0

∫
R3

(
σ(A +∇ϕA) · ∂tΦ−

1

µ
curlA · curl Φ

)
=

∫ T

0

∫
R3

Jt · Φ.

for all smooth divergence-free Φ with Φ(·,T ) = 0.

I coercive, uniquely solvable

I E := A +∇ϕA is one solution of the eddy current equation

 curlE ,
√
σE depend continuously on Jt (uniformly w.r.t. σ)

(for all solutions of the eddy current equation)
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Asymptotic results

Unified variational formulation

I allows to rigorously linearize E w.r.t. σ around σ0 = 0
(elliptic equation becoming a little bit parabolic in some region...)

I easily extends from R3 to bounded domain O
(O simply conn. with Lipschitz-boundary, ν ∧ E |∂O = 0)

I justifies parabolic regularization: If Eε solves

∂t(σεEε) + curl

(
1

µ
curlEε

)
= −∂tJ in O×]0,T [,

with σε(x) = max{σ(x), ε} then

σεEε → σE , curlEε → curlE

(Arnold/H., Proceedings of IPDO 2013)

I yields the factorization method for inverse eddy current probl.
(Arnold/H., Inverse Problems 2013)
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Open problem

Unified variation theory

I requires some regularity of Ω = suppσ
(finite union of bounded Lipschitz domains with connected complement).

I requires conductivity jump between conducting and insulating
regions, i.e. σ ∈ L∞+ (Ω) in order to determine ϕ from A.

I does not cover continuous transitions between conducting and
non-conducting parts.

Missing step: Solution theory for

div σ∇ϕ = − div σA

for general σ ∈ L∞, σ ≥ 0?
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