

The Vanishing Conductivity Limit in Eddy Current Imaging

Bastian von Harrach harrach@math.uni-stuttgart.de (joint work with Lilian Arnold)

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

SIAM Conference on Imaging Science Hong Kong Baptist University, Hong Kong, May 12–14, 2014.

Inverse Electromagnetics

Inverse Electromagnetics:

- Generate EM field (drive excitation current through coil)
- Measure EM field (induced voltages in meas. coil)
- Gain information from measurements

Applications:

- Metal detection (buried conductor)
- Non-destructive testing (crack in metal, metal in concrete)

Maxwell's equations

Classical Electromagnetics: Maxwell's equations

 $\operatorname{curl} H = \epsilon \partial_t E + \sigma E + J \qquad \text{in } \mathbb{R}^3 \times]0, T[$ $\operatorname{curl} E = -\mu \partial_t H \qquad \text{in } \mathbb{R}^3 \times]0, T[$

E(x, t):Electric field $\epsilon(x)$:PermittivityH(x, t):Magnetic field $\mu(x)$:PermeabilityJ(x, t):Excitation current $\sigma(x)$:Conductivity

Knowing $J, \sigma, \mu, \epsilon + init.$ cond. determines E and H.

Eddy currents

Maxwell's equations

~

$$\begin{aligned} \operatorname{curl} H &= \epsilon \partial_t E + \sigma E + J & \text{in } \mathbb{R}^3 \times]0, T[\\ \operatorname{curl} E &= -\mu \partial_t H & \text{in } \mathbb{R}^3 \times]0, T[\end{aligned}$$

Eddy current approximation: Neglect displacement currents $\epsilon \partial_t E$

 Justified for low-frequency excitations (Alonso 1999, Ammari/Buffa/Nédélec 2000)

$$\partial_t(\sigma E) + \operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight) = -\partial_t J \quad ext{in } \mathbb{R}^3 imes]0, \, \mathcal{T}[$$

Where's Eddy?

• $\sigma = 0$: (Quasi-)Magnetostatics

$$\operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight)=-\partial_t J$$

Excitation $\partial_t J$ instantly generates magn. field $\frac{1}{u} \operatorname{curl} E = -\partial_t H$.

• $\sigma \neq 0$: Eddy currents

$$\partial_t(\sigma E) + \operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight) = -\partial_t J$$

 $\partial_t J$ generates changing magn. field + currents inside conductor Induced currents oppose what created them (Lenz law)

Parabolic-elliptic equations

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J \quad \text{in } \mathbb{R}^3 \times]0, T[$$

- parabolic inside conductor $\Omega = \operatorname{supp}(\sigma)$
- elliptic outside conductor

Scalar example: $(\sigma u)_t = u_{xx}$, $u(\cdot, 0) = 0$, $u_x(-2, \cdot) = u_x(2, \cdot) = 1$.

Vanishing conductivity limit

Parabolic-elliptic eddy current equation

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -\partial_t J \quad \text{in } \mathbb{R}^3 \times]0, T[$$

Vanishing conductivity limit required for

Numerical implementation by parabolic regularization

Replace
$$\sigma(x)$$
 by $\sigma_{\epsilon}(x) := \min\{\sigma(x), \epsilon\}, \quad \epsilon > 0.$

• Inversion by linearization: Find σ from measurements of *E* by

linearizing *E* w.r.t. σ around $\sigma = 0$.

In this talk: How does the solution change

- if a parabolic equation becomes elliptic?
- if an elliptic equation becomes a little bit parabolic?

Standard approach

$$\partial_t(\sigma E) + \operatorname{curl}\left(rac{1}{\mu}\operatorname{curl} E
ight) = -\partial_t J \quad ext{in } \mathbb{R}^3 imes]0, T[$$

Standard approach: Decouple elliptic and parabolic part (e.g. Bossavit 1999, Acevedo/Meddahi/Rodriguez 2009)

Find $(E_{\mathbb{R}^3\setminus\Omega}, E_\Omega) \in H_{\mathbb{R}^3\setminus\Omega} \times H_\Omega$ s.t.

- E_{Ω} solves parabolic equation + init. cond.
- $E_{\mathbb{R}^3 \setminus \Omega}$ solves elliptic equation
- interface conditions are satisfied

Problem: Theory depends on $\Omega = \operatorname{supp} \sigma$ and $\inf \sigma|_{\Omega}$.

Vanishing conductivity limits require unified approach.

Rigorous formulation

Rigorous formulation: Let $\mu \in L^{\infty}_{+}$, $\sigma \in L^{\infty}$, $\sigma \geq 0$,

$$egin{aligned} &J_t \in L^2(0,\,T,\,W(\operatorname{curl})') & ext{ with } \operatorname{div} J_t = 0 \ &E_0 \in L^2(\mathbb{R}^3)^3 & ext{ with } \operatorname{div}(\sigma E_0) = 0. \end{aligned}$$

For $E \in L^2(0, T, W(curl))$ the eddy current equations

$$\partial_t(\sigma E) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl} E\right) = -J_t \quad \text{in } \mathbb{R}^3 \times]0, T[$$
$$\sqrt{\sigma}E(x,0) = \sqrt{\sigma(x)}E_0(x) \quad \text{in } \mathbb{R}^3$$

are well-defined and (if solvable) uniquely determine curl E, $\sqrt{\sigma E}$.

Natural variational formulation

Natural unified variational formulation ($E_0 = 0$ for simplicity):

Find $E \in L^2(0, T, W(\text{curl}))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma E \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} E \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth Φ with $\Phi(\cdot, T) = 0$.

- equivalent to eddy current equation
- not coercive, does not yield existence results

University of Stuttgart Germany

Gauged formulation

Gauged unified variational formulation ($E_0 = 0$ for simplicity)

Find divergence-free $E \in L^2(0, T, W^1(\mathbb{R}^3))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma E \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} E \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth divergence-free Φ with $\Phi(\cdot, T) = 0$.

- coercive, yields existence and continuity results
- not equivalent to eddy current equation ($\sigma \neq \text{const.} \rightsquigarrow \text{div } \sigma E \neq \sigma \text{ div } E$)
- does not determine true solution up to gauge (curl-free) field

Coercive unified formulation

How to obtain coercive + equivalent unified formulation?

Ansatz E = A + ∇φ with divergence-free A. (almost the standard (A, φ)-formulation with Coulomb gauge)

University of Stuttgart

• Consider $\nabla \varphi = \nabla \varphi_A$ as function of A by solving div $\sigma \nabla \varphi_A = -\operatorname{div} \sigma A$.

($\rightsquigarrow \operatorname{div} \sigma E = 0$).

- Obtain coercive formulation for A (Lions-Lax-Milgram Theorem ~> Solvability and continuity results)
- ► A determines E (more precisely: curl E and √σE)

Unified variational formulation

Unified variational formulation (Arnold/H., SIAP, 2012)

Find divergence-free $A \in L^2(0, T, W^1(\mathbb{R}^3))$ that solves

$$\int_0^T \int_{\mathbb{R}^3} \left(\sigma(A + \nabla \varphi_A) \cdot \partial_t \Phi - \frac{1}{\mu} \operatorname{curl} A \cdot \operatorname{curl} \Phi \right) = \int_0^T \int_{\mathbb{R}^3} J_t \cdot \Phi.$$

for all smooth divergence-free Φ with $\Phi(\cdot, T) = 0$.

coercive, uniquely solvable

- $E := A + \nabla \varphi_A$ is one solution of the eddy current equation
- \rightsquigarrow curl *E*, $\sqrt{\sigma}E$ depend continuously on J_t (uniformly w.r.t. σ) (for all solutions of the eddy current equation)

University of Stuttgart Germany

Asymptotic results

Unified variational formulation

- allows to rigorously linearize E w.r.t. σ around σ₀ = 0 (elliptic equation becoming a little bit parabolic in some region...)
- ► easily extends from \mathbb{R}^3 to bounded domain *O* (*O* simply conn. with Lipschitz-boundary, $\nu \wedge E|_{\partial O} = 0$)
- justifies parabolic regularization: If E_{ϵ} solves

$$\partial_t(\sigma_{\epsilon}E_{\epsilon}) + \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl}E_{\epsilon}\right) = -\partial_t J \quad \text{in } O \times]0, T[,$$

with $\sigma_{\epsilon}(x) = \max\{\sigma(x), \epsilon\}$ then
 $\sigma_{\epsilon}E_{\epsilon} \to \sigma E, \quad \operatorname{curl}E_{\epsilon} \to \operatorname{curl}E$

(Arnold/H., Proceedings of IPDO 2013)

 yields the factorization method for inverse eddy current probl. (Arnold/H., Inverse Problems 2013)

Open problem

Unified variation theory

• requires some regularity of $\Omega = \operatorname{supp} \sigma$

(finite union of bounded Lipschitz domains with connected complement).

- requires conductivity jump between conducting and insulating regions, i.e. σ ∈ L[∞]₊(Ω) in order to determine φ from A.
- does not cover continuous transitions between conducting and non-conducting parts.

Missing step: Solution theory for

$$\operatorname{div} \sigma \nabla \varphi = -\operatorname{div} \sigma A$$

for general $\sigma \in L^{\infty}$, $\sigma \geq 0$?