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0 Introduction and preliminaries

These lecture notes summarize the theorems and proofs for my four lectures given at
the Advanced Instructional School on Theoretical and Numerical Aspects of Inverse
Problems. The slides of the lecture can be found on my webpage

http://www.mathematik.uni-stuttgart.de/oip

We summarize some notations and preliminaries.
Definition and Theorem 0.1. LetX and Y be real Hilbert spaces with scalar products
(·, ·)X and (·, ·)Y and corresponding norms

‖x‖X :=
√

(x, x)X , and ‖y‖Y :=
√

(y, y)Y .

For a linear operator A : X → Y , the following two statements are equivalent:
(a) A is continuous.
(b) A is bounded, i.e., there exists a constant C > 0 with

‖Ax‖ ≤ C ‖x‖ ∀x ∈ X.

The space of continuous linear operators from X to Y is denoted by L(X, Y ). We also
write L(X) := L(X,X).

Definition and Theorem 0.2.
(a) L(X, Y ) is a Banach spaces with respect to the norm

‖A‖L(X,Y ) := sup
x 6=0

‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y .

(b) For A ∈ L(X, Y ), there exists a unique operator A∗ ∈ L(Y,X) that fulfills

(x,A∗y)X := (Ax, y)Y ∀x ∈ X, y ∈ Y.

A∗ is called the adjoint operator or A. An operator A ∈ L(X) with A = A∗ is
called self-adjoint. For self-adjoint operators A, it holds that

‖A‖L(X,Y ) = sup
x 6=0

(x,Ax)X
‖x‖2

X

= sup
‖x‖X=1

(x,Ax)X .

Theorem 0.3. (Lax-Milgram)
Let X be a Hilbert space and

b : X ×X → R,
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be a continuous, symmetric and coercive bilinear form, i.e.

b(u, v) = b(v, u) ∀u, v ∈ X (Symmetry)
∃C > 0 : |b(u, v)| ≤ C ‖u‖ ‖v‖ ∀u, v ∈ X (Continuity)
∃β > 0 : b(u, u) ≥ β ‖u‖2 ∀u ∈ X (Coercivity)

and b is linear in each of its two arguments. Let l ∈ L(X,R).
Then there exists a unique u ∈ X with

b(u, v) = l(v) für alle v ∈ X.

u depends linearly and continuous on l,

‖u‖X ≤
1
β
‖l‖L(X,R) .

1 Theorems and proofs for Lecture 1

Definition 1.1. A linear operator F ∈ L(X, Y ) is called compact, if F (U) is compact
for alle bounded U ⊆ X, i.e. if (xn)n∈N ⊂ X is a bounded sequence then (F (xn))n∈N ⊂ Y
contains a bounded subsequence.

Theorem 1.2. If F is compact and injective, and dimX =∞, then F−1 is not contin-
uous, i.e., the inverse problem Fx = y is ill-posed.

Proof. Since dimX = ∞, we can choose an infinite sequence of orthonormal vectors
(xn)n∈N. From the orthonormality, it follows that

‖xn − xm‖ =
√

2 ∀n,m ∈ N, n 6= m,

so that no subsequence of (xn)n∈N can be convergent.
On the other hand, (xn)n∈N is bounded, and F is compact, so that (Fxn)n∈N must con-
tain a converging subsequence (Fxnk)k∈N. Hence, (F (xnk))k∈N converges but (xnk)k∈N
does not converge, which shows that F−1 cannot be continuous. �

Theorem 1.3. Every limit of compact operators is compact.

Proof. Let (Fn)n∈N ⊂ L(X, Y ) be a sequence of compact operators, and let F be a
bounded linear operator with

‖Fn − F‖L(X,Y ) → 0.

We will show that F is compact, i.e. that the image of every bounded sequence has a
converging subsequence.
Let (xn)n∈N ⊂ X be a bounded sequence. Then,
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• there exists a subsequence (x1,l)l∈N of (xn)n∈N ⊂ X, so that F1x1,l converges,
• there exists a (sub-)subsequence (x2,l)l∈N of (x1,l)l∈N, so that F2x2,l converges,

Proceeding this way, we obtain a nested subsequences (xk,l)l∈N so that Fkxk,l converges.
Now consider the diagonal sequence (xl,l)l∈N. For each k ∈ N, the sequence (Fkxl,l)l∈N
convergences. Hence, for all k, l,m ∈ N

‖Fxl,l − Fxm,m‖
≤ ‖Fxl,l − Fkxl,l‖+ ‖Fkxl,l − Fkxm,m‖+ ‖Fkxm,m − Fxm,m‖
≤ ‖F − Fk‖ (‖xl,l‖+ ‖xm,m‖) + ‖Fkxl,l − Fkxm,m‖

The first term becomes arbitrarily small for sufficiently large k, the second term becomes
arbitrarily small for sufficiently large l(k),m(k). Hence,

lim
l,m→∞

‖Fxl,l − Fxm,m‖ = 0,

so that (Fxl,l)l∈N is a Cauchy-sequence and thus convergent. �

Theorem 1.4. If F ∈ L(X, Y ) and dimR(F ) <∞ then F is compact.

Proof. Let (xn)n∈N ⊂ X be a bounded sequence. Then (Fxn)n∈N is a bounded sequence
in the finite-dimensional space R(F ), and in finite dimensions, every bounded sequence
contains a converging subsequence (Theorem of Bolzano-Weierstrass). �

Theorem 1.5. Let F ∈ L(X, Y ) possess an unbounded left inverse F−1, and let Rn ∈
L(Y,X) be a sequence with

Rny → F−1y for all y ∈ R(F ).

Then ‖Rn‖ → ∞.

Proof. Assume that there exists a constant C > 0 such that

‖Rnk‖ ≤ C

for a subsequence (Rnk)k∈N. Then for all y ∈ R(F )∥∥∥F−1y
∥∥∥ = lim

k→∞
‖Rnky‖ ≤ C ‖x‖ ,

so that F−1 is bounded. Hence, the assertion follows by contraposition. �
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2 Theorems and proofs for Lecture 2

Theorem 2.1. Let A ∈ L(X, Y ). For each α > 0, the operators

A∗A+ αI ∈ L(X) and AA∗ + αI ∈ L(Y )

are continuously invertible, and they fulfill∥∥∥(A∗A+ αI)−1
∥∥∥
L(X)
≤ 1
α
,

∥∥∥(AA∗ + αI)−1
∥∥∥
L(Y )
≤ 1
α
.

Proof. Let z ∈ X. A vector x ∈ X solves

(A∗A+ αI)x = z

if and only if it solves

b(x, ξ) := ((A∗A+ αI)x, ξ)X = (z, ξ)X =: l(ξ) ∀ξ ∈ X.

b : X ×X → R is bilinear and fulfills

b(x, ξ) = (Ax,Aξ)X + α(x, ξ)X ,

so that b is symmetric, continuous and coercive with coercivity constant α. l ∈ L(X,R)
fulfills ‖l‖L(X,R) ≤ ‖z‖X .
Hence, it follows from the Theorem of Lax-Milgram (Theorem 0.3) that A∗A + αI is
continuously invertible with ∥∥∥(A∗A+ αI)−1

∥∥∥
L(X)
≤ 1
α
.

The same arguments prove the assertion for AA∗ + αI. �

Theorem 2.2. Let A ∈ L(X, Y ). xδα := (A∗A + αI)−1A∗yδ is the unique minimizer of
the Tikhonov functional

Jα(x) :=
∥∥∥Ax− yδ∥∥∥2

Y
+ α ‖x‖2

X

Proof. Let xδα := (A∗A+ αI)−1A∗yδ. For all x ∈ X, x 6= xδα, we have that∥∥∥yδ − Ax∥∥∥2

Y
+ α ‖x‖2

X −
∥∥∥yδ − Axδα∥∥∥2

Y
+ α

∥∥∥xδα∥∥∥2

X

= −2(yδ, Ax)Y + (x, (A∗A+ αI)x)X + 2(yδ, Axδα)Y − (xδα, (A∗A+ αI)xδα)X
=
(
(x− xδα), (A∗A+ αI)(x− xδα)

)
X

+ 2
(
x, (A∗A+ αI)xδα

)
X
− 2(yδ, Ax)Y

− 2
(
xδα, (A∗A+ αI)xδα

)
X

+ 2(yδ, Axδα)Y

=
∥∥∥A(x− xδα)

∥∥∥2

Y
+ α

∥∥∥x− xδα∥∥∥2

X
> 0.

This shows that Jα(x) > Jα(xδα) for all x 6= xδα. �
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Theorem 2.3. Let A ∈ L(X, Y ) be injective.
(a) R(A∗A) is dense in X
(b) If a sequence (xk)k∈N ⊂ X fulfills

A∗Axk → A∗Ax and ‖xk‖X ≤ ‖x‖X

then xk → x.

Proof. (a) Assume that R(A∗A) was not dense in X. Then there would exist a vector
x 6= 0 with x ∈ R(A∗A)⊥, i.e.,

(x,A∗Aξ) = 0 for all ξ ∈ X.

Choosing ξ = x we would obtain that ‖Ax‖2 = (x,A∗Ax) = 0, which would contra-
dict the injectivity of A.

(b) For every z ∈ Y we have that

|(x, xk − x)X | = |(A∗Az, xk − x)X |+ |(x− A∗Az, xk − x)X |
≤ ‖z‖Y ‖A

∗A(xk − x)‖Y + 2 ‖x− A∗Az‖X ‖x‖X

Since the range of A∗A is dense in X, the second summand can be made arbitrarily
small by choosing an appropriate z. The first summand becomes arbitrarily small
for sufficiently large k. Hence,

(x, xk − x)→ 0.

This shows that (x, xk) → ‖x‖2
X . Using the assumption ‖xk‖X ≤ ‖x‖X it follows

that
‖x− xk‖2

X = ‖x‖2
X − 2(x, xk)X + ‖xk‖2

X ≤ 2 ‖x‖2
X − 2(x, xk)→ 0,

so that xk → x. �

Theorem 2.4. Let A ∈ L(X, Y ) be injective (with a possibly unbounded left inverse).
Let Ax̂ = ŷ and let (yδ)δ>0 ⊆ Y be noisy measurements with

∥∥∥yδ − ŷ∥∥∥
Y
≤ δ.

If we choose the regularization parameter so that

α(δ)→ 0 and δ2

α(δ) → 0,

then
(A∗A+ αI)−1A∗yδ → x̂ for δ → 0.
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Proof. Writing
Rα := (A∗A+ αI)−1A∗ and xδα := Rαy

δ

we have that ∥∥∥xδα − x̂∥∥∥X ≤ ∥∥∥Rα(yδ − ŷ)
∥∥∥
X

+ ‖Rαŷ − x̂‖X .

We will show that (a) ‖Rα‖ ≤ 1√
α
and (b) Rαŷ → x̂ for α→ 0.

(a) One easily checks that

Rα = (A∗A+ αI)−1A∗ = A∗(AA∗ + αI)−1,

and that (A∗A+ αI)−1, (AA∗ + αI)−1 and ARα are self-adjoint operators.
For all y ∈ Y , it follows that

(ARαy, y)Y = (y, y)− α
(
(AA∗ + αI)−1y, y

)
≤ ‖y‖2

Y ,

which shows that ‖ARα‖ ≤ 1.
Using Theorem 2.1 we obtain that

‖Rα‖2
L(Y,X) = sup

y∈Y, ‖y‖Y =1
‖Rαy‖2

X = ‖R∗αRα‖L(Y )

≤
∥∥∥(AA∗ + αI)−1

∥∥∥
L(Y )
‖ARα‖L(Y ) ≤

1
α
.

Hence, ‖Rα‖ ≤ 1√
α
.

(b) We write xα := Rαŷ. Using the minimizer property of xα in Theorem 2.2 we obtain
that

‖ŷ − Axα‖2 + α ‖xα‖2 ≤ ‖ŷ − Ax̂‖2 + α ‖x̂‖2 ,

and thus ‖xα‖ ≤ ‖x̂‖.
Furthermore, we have that

α ‖x̂‖2
X = ‖(A∗A+ αI)(xα − x̂)‖2

X

= ‖A∗A(xα − x̂)‖2
X + 2α ‖A(xα − x̂)‖Y + α2 ‖xα − x̂‖2

X .

Since xα is bounded, it follows that

A∗A(xα − x̂)→ 0,

and, together with ‖xα‖ ≤ ‖x̂‖, we obtain from Theorem 2.3 that xα → x̂. �
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3 Theorems and proofs for Lecture 3

Definition 3.1. Let d ∈ Rn, |d| = 1 be an arbitrary direction. Let Φz solve

∆Φz = d · ∇δz in Ω, ∂νΦz|∂Ω = 0

and
∫
∂Ω Φz ds = 0. (Φz is called dipole function).

Definition 3.2. We define the virtual measurements

LD : L2
�(D)n → L2

�(∂Ω), F 7→ v|∂Ω,

where v ∈ H1
� (Ω) solves∫

Ω
∇v · ∇w dx =

∫
D
F · ∇w dx ∀w ∈ H1

� (Ω).

Theorem 3.3. For all unit vectors d ∈ Rn, ‖d‖ = 1, and every point z ∈ Ω \ ∂D,

z ∈ D if and only if Φz|∂Ω ∈ R(LD).

Proof. (a) First let z ∈ D and ε > 0 be such that Bε(z) ⊆ D. We choose

f1 ∈ H1(Bε(z)) with f1|∂Bε(z) = Φz,d|∂Bε(z)
f2 ∈ H1(Bε(z)) with ∆f2 = 0, and ∂νf2|∂Bε(z) = ∂νΦz,d|∂Bε(z).

and define F ∈ L2(D)n as the zero continuation of ∇(f1 − f2) ∈ L2(Bε(z))n to D.
Then the function

v :=
{

Φz,d in Ω \Bε(z)
f1 in Bε(z).

fulfills v ∈ H1
� (Ω) and, for all w ∈ H1

� (Ω),∫
Ω
∇v · ∇w dx =

∫
Ω\Bε(z)

∇Φz,d · ∇w dx+
∫
Bε(z)
∇f1 · ∇w dx

= −
∫
∂Bε(z)

∂νΦz,dw|∂Bε(z) ds+
∫
Bε(z)
∇f1 · ∇w dx

=
∫
Bε(z)
∇(f1 − f2) · ∇w dx =

∫
D
F · ∇w dx.

This shows that Φz,d|∂Ω = v|∂Ω = LD(F ) ∈ R(LD).
(b) Now let Φz,d|Σ ∈ R(LD). Let v ∈ H1

� (Ω) be the function from the definition of LD.
Then

v|∂Ω = Φz,d|∂Ω and ∂νv|∂Ω = 0 = ∂νΦz,d|∂Ω.

It follows by unique continuation that v = Φz,d in the connected set Ω \ (D ∪ {z}).
If z 6∈ D then d · ∇δz 6∈ H−2(Ω \D), and thus Φz,d 6∈ L2(Ω \D), which contradicts
that v = Φz,d in Ω \ (D ∪ {z}). Hence, z ∈ D. �
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Theorem 3.4. The adjoint operator of LD is given by

L∗D : L2
�(∂Ω)→ L2(D)n, g 7→ ∇u0|D,

where u0 ∈ H1
� (Ω) solves

∆u0 = 0 in Ω, and ∂νu0|∂Ω = g.

Proof. For all g ∈ L2
�(∂Ω), and F ∈ L2(D)n, we have that,∫

D
(L∗Dg) · F dx =

∫
∂Ω
g(LDF ) dx =

∫
∂Ω
gv|∂Ω dx

=
∫

Ω
∇u0 · ∇v dx =

∫
D
∇u0 · F dx,

which shows the assertion. �

Theorem 3.5. Let σ1, σ0 ∈ L∞+ (Ω). Then, for all g ∈ L2
�(∂Ω),∫

Ω
(σ0 − σ1)|∇u0|2 dx ≤

∫
∂Ω
g (Λ(σ1)− Λ(σ0)) g ds

≤
∫

Ω

σ0

σ1
(σ0 − σ1)|∇u0|2 dx,

where u0 ∈ H1
� (Ω) solves ∇ · (σ0∇u0) = 0 in Ω, and σ0∂νu0|∂Ω = g.

Proof. Let g ∈ L2
�(∂Ω), and let u1 ∈ H1

� (Ω) solve ∇·(σ1∇u1) = 0 in Ω, and σ1∂νu1|∂Ω =
g.
Then, ∫

Ω
σ1∇u1 · ∇u0 dx =

∫
Ω
gu0 ds =

∫
Ω
σ0∇u0 · ∇u0 dx =

∫
∂Ω
gΛ0g ds.

Hence, using ∫
Ω
σ1∇(u1 − u0) · ∇(u1 − u0) dx

=
∫

Ω
σ1|∇u1|2 dx−

∫
Ω
σ0|∇u0|2 dx+

∫
Ω

(σ1 − σ0)|∇u0|2 dx,

we obtain that∫
∂Ω
g(Λ(σ1)− Λ(σ0))g ds =

∫
Ω

(σ0 − σ1)|∇u0|2 dx+
∫

Ω
σ1|∇(u1 − u0)|2 dx,

which already yields the first asserted inequality.
By interchanging σ1 and σ0 we conclude∫

∂Ω
g(Λ(σ0)− Λ(σ1))g ds =

∫
Ω

(σ1 − σ0)|∇u1|2 dx+
∫

Ω
σ0|∇(u0 − u1)|2 dx

=
∫

Ω

(
σ1

∣∣∣∣∇u1 −
σ0

σ1
∇u0

∣∣∣∣2 +
(
σ0 −

σ2
0
σ1

)
|∇u0|2,

)
dx

and hence obtain the second inequality. �
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Theorem 3.6. Let X1, X2, and Y be three real Hilbert spaces, Ai ∈ L(Xi, Y ), i = 1, 2.
If there exists C > 0 with

‖A∗1y‖X1
≤ C ‖A∗2y‖X2

for all y ∈ Y

then R(A1) ⊆ R(A2).

Proof. Let y ∈ R(A1). Then there exists x ∈ Y such that y = A1x and thus

|(y, η)Y | = |(A1x, η)Y | = |(x,A∗1η)X | ≤ ‖x‖X ‖A
∗
1η‖X1

≤ C ‖x‖X ‖A
∗
2η‖X2

∀η ∈ Y.

This shows that the linear functional

l(ξ) := (y, η)Y for every ξ = A∗2η ∈ R(A∗2) ⊆ X.

fulfills |l(ξ)| ≤ C ‖x‖ ‖ξ‖. Hence, l is well-defined and continuous on R(A∗2).
Using the Riesz theorem, it follows that there exists x′ ∈ X with

(x′, ξ)Y = l(ξ) for all ξ ∈ R(A∗2).

Hence, for all η ∈ Y we have that

(A2x
′, η) = (x′, A∗2η) = l(A∗2η) = (y, η),

and hence y = A2x
′ ∈ R(A2). �

4 Theorems and proofs for Lecture 4

Theorem 4.1. Let
• D be open, D ⊂ Ω, and Ω \D connected,
• B be open, B ⊂ Ω, and B * D.

Then there exists (gm)m∈N ⊂ L2
�(∂Ω) s.t. the solutions (um)m∈N of

∆um = 0 in Ω, ∂νum|∂Ω = gm,

fulfill
lim
m→∞

∫
B
|∇um|2 dx =∞ and lim

m→∞

∫
D
|∇um|2 dx = 0.

Proof. (a) Reformulation as range (non-)inclusion.
Let LD, LB be the virtual measurement operators for the sets D and B from
Definition 3.2. By Theorem 3.4, the adjoint operators

L∗D : L2
�(∂Ω)→ L2(D)n and L∗B : L2

�(∂Ω)→ L2(B)n
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fulfill L∗Bg = ∇u|B and L∗Dg = ∇u|D, where u ∈ H1
� (B) solves

∆u = 0 and ∂νu|∂Ω = g.

Hence, the assertion is equivalent to the statement
@C > 0 : ‖L∗Bg‖ ≤ C ‖L∗Dg‖ ∀g ∈ L2

�(∂Ω)
which follows from Theorem 3.6 if we can show that the range (non-)inclusion

R(LB) * R(LD). (1)

(b) Proof of the range (non-)inclusion.
Since B * D, and both, B and D, are open, there exists z ∈ B with z 6∈ D. Let Φz

be the dipole function from Definition 3.1 (with an arbitrary direction d). Then
we obtain from Theorem 3.3 that

Φz ∈ R(LB) and Φz 6∈ R(LD),
which shows that R(LB) * R(LD). �

Theorem 4.2. Let
• σ(x) = 1 + χD(x), with
• D open, D ⊂ Ω, and Ω \D connected.

Then for each open ball B ⊆ Ω,

B ⊆ D ⇐⇒ Λ(1) + 1
2Λ′(1)χB ≥ Λ(σ)

Proof. Throughout the proof, u ∈ H1
� (Ω) denotes the solution of

∆u = 0 and ∂νu|∂Ω = g.

First let B ⊆ D. Using the monotonicity result in Theorem 3.5, we obtain that∫
∂Ω
g (Λ(σ)− Λ(1)) g ds ≤

∫
Ω

1
σ

(1− σ)|∇u|2 dx = −
∫
D

1
2 |∇u|

2 dx

≤ −
∫
B

1
2 |∇u|

2 dx = 1
2

∫
∂Ω
g (Λ′(1)χB) g ds,

which shows that Λ(σ)− Λ(1) ≤ 1
2Λ′(1)χB.

Now let B * D. Again using the monotonicity result in Theorem 3.5, we obtain that∫
∂Ω
g
(

Λ(σ)− Λ(1)− 1
2Λ′(1)χB

)
g ds ≥

∫
Ω

(1− σ)|∇u|2 dx− 1
2

∫
∂Ω
g (Λ′(1)χB) g ds

= −
∫
D
|∇u|2 dx+

∫
B

1
2 |∇u|

2 dx.

Using the localized potentials from Theorem 5.1, we obtain a g for which

−
∫
D
|∇u|2 dx+

∫
B

1
2 |∇u|

2 dx ≥ 0,

which shows that Λ(σ)− Λ(1)− 1
2Λ′(1)χB 6≤ 0. �
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