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» Apply electric currents on subject’s boundary
» Measure necessary voltages
~~ Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)
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e Mathematical Model

Electrical potential u(x) solves
V. (o(x)Vu(x))=0 xe€Q

Q CR"™ imaged body, n > 2
o(x): conductivity
u(x): electrical potential

Idealistic model for boundary measurements (continuum model):

o0yu(x)|aq: applied electric current
u(x)|aq: measured boundary voltage (potential)
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PDE theory

Elliptic PDE theory (Lax-Milgram):
For each g € L2(0Q) there exists a unique solution u € H}(Q) of

V-(eVu)=0 inQ and ocdyulspa=g.

The solution is uniquely determined by the variational formulation

/ oVu-Vv dx :/ gvloa ds Vv € HX(Q). (1)
Q o0

Neumann-to-Dirichlet operator (NtD):

» Define A(0) : g — u|spq, where u solves (1).
» A(o) € L(L2(09)) compact and selfadjoint.
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o Forward and inverse problem

» (Non-linear) forward operator of EIT:
N: o elP(Q) — No)e L(L3(09))
conductivity +—> measurements
» Inverse problem of EIT:

AL Ao) = o
measurements +—  conductivity (image)

Inclusion /shape detection problem:

A(o) — supp(o — 00)?, oo: reference conductivity.

B. Harrach: Lecture 4: The Monotonicity Method for inclusion detection in EIT



University of Stuttgart
Germany

g Monotonicity (from Lecture 3)

Theorem 3.3. Let 01,00 € LL(Q). Then, for all g € L2(0%),

[eo-aVulax < [ g(he) - Ao ds
Q o0

where uy € H2(Q) solves V - (0oVug) = 0 in ©, and 000, to|sa = &

Corollary.
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v Monotonicity-based inclusion detection

For simplicity, assume for the true conductivity
» o(x) =1+ xp(x), with D open, D C Q, Q\ D connected.

Introduce test conductivity
» 7(x) =1+ xg(x) with a small ball B C Q.

By monotonicity,

BCD = 71<o0 = N\7)=>N\o)
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v Monotonicity-based inclusion detection

Simple monotonicity-based inclusion detection (formulated for o = 1+ xp)
For each ball B C Q

» Calculate Test-NtD A(7) for 7:= 1+ x5

» Mark ball if A(7) > A(0)

Result: Each ball B C D will be marked.

Problems:
» Does this algorithm mark balls B € D?

» Calculating A(7) is computationally expensive.
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Monotonicity-based inclusion detection

» Does this algorithm mark balls B ¢ D?
» Show that B C D if and only if A(1+ xg) > A(0).
~~ Monotonicity Algorithm precisely marks D.

» Calculating A(1 + xp) is computationally expensive.
» Show that

1
BCD <+ A1)+ EA'(l)XB > \(o)
where
/ g(N(1)xg)hds= —/ Vuf - Vull dx
fols) B
~ Algorithm only requires homogeneous solutions
Aus =0, Oyuflon =g
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o Localized potentials

Theorem 4.1. Let
» D be open, D C Q, and Q\ D connected,
» B be open, B C Q, and B¢ D.
Then there exists (gm)men C L2(09) s.t. the solutions (um)men of

Aup =0 inQ, Oylim|oa = &m-

fulfill

m—00 m—00

lim /|Vum|2dxzoo an lim /|Vum|2 dx = 0.
B
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v Monotonicity-based shape reconstruction

Theorem 4.2. Let

» o(x) =1+ xp(x), with

» D open, D C Q, and Q \5 connected.
Then for each open ball B C Q,

BCD <+ N1)+ %A’(l)xB > N(o)

Corollary.

1
D is the union of all balls B C Q with A(1) + 5/\’(1))(3 > A(o).
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Stability / Regularization / Convergence
> Let A% € L£(L2(0Q)) (compact & self-adjoint) with

HNS B A(U)Hc(Lg(aQ)) <.

» Regularized definiteness test: For a > 0, and a ball B C Q
define
i Las _ >
RN By =L L A1)+ 3N (1)xs = Mo) = —al,
0 else.

» Then,
{ 1 ifBCD,

5 By .—
Rs(\°, B) := 0 if BC D and ¢ is suff. small.

Ball B is correctly marked, if noise is below some (B-depend.) level.
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Conclusions

D is the union of all balls B C Q with A(1) + %/\'(1))(5 > N(o).

The montonicity method
» shows that conductivity inclusions are uniquely determined from
measuring the NtD.
> can be extended to more general cases, even further than FM.
> allows convergent implementation for noisy data.

Literature: H. /Ullrich: Monotonicity-based shape reconstruction in EIT, SIMA 2013.
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