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Setting

Let

I X and Y be Hilbert spaces

I A ∈ L(X ,Y ), i.e., A : X → Y is linear and continuous

I A be injective, i.e., there exists left inverse

A−1 : R(A) ⊆ Y → X .

I A−1 linear but possibly discontinuous (unbounded)
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Setting

Consider

I true solution x̂ ∈ X ,

I exact measurements ŷ = Ax̂ ∈ Y ,

I noisy measurements y δ ∈ Y ,
∥∥y δ − ŷ

∥∥ ≤ δ.

Given exact measurements ŷ , we could calculate x̂ = A−1ŷ .
But how can we approximate x̂ from noisy measurements y δ?

Problems:

I A−1y δ may not be well-defined (for y δ 6∈ R(A))

I A−1 discontinuous  A−1y δ 6→ A−1ŷ = x̂ for δ → 0.

I A−1 unbounded. Possibly,
∥∥A−1y δ∥∥

X
→∞
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Goal

Can we approximate x̂ = A−1ŷ from noisy measurements y δ ≈ ŷ?

Goal: Find reconstruction function R(y δ, δ) so that

R(y δ, δ)→ A−1ŷ = x̂ for δ → 0.

Note: R(y δ, δ) := A−1y δ does not work!

In this lecture: R(y δ, δ) := (A∗A + δI )−1A∗y δ works, i.e.,

(A∗A + δI )−1A∗y δ → A−1ŷ = x̂ .
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Motivation

Can we approximate x̂ = A−1ŷ from noisy measurements y δ ≈ ŷ?

I Standard approach ( xδ = A−1y δ)

Minimize data-fit (residuum)
∥∥∥Ax − y δ

∥∥∥
Y

!

I Tikhonov regularization:

Minimize
∥∥∥Ax − y δ

∥∥∥2
Y

+ α ‖x‖2X !

with regularization parameter α > 0

α small  solution will fit measurements well,
α large  solution will be regular (small norm).
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Motivation
Tikhonov regularization:

Minimize
∥∥∥Ax − y δ

∥∥∥2
Y

+ α ‖x‖2X !

Equivalent formulation:

Minimize

∥∥∥∥( A√
αI

)
x −

(
y δ

0

)∥∥∥∥2
X×Y

=

∥∥∥∥( Ax − y δ√
αx

)∥∥∥∥2
X×Y

!

Formal use of normal equations yields(
A∗

√
αI
)( A√

αI

)
x =

(
A∗

√
αI
)( y δ

0

)
,

and thus
(A∗A + αI )x = A∗y δ.
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Invertibility of A∗A+ αI

Theorem 2.1. Let A ∈ L(X ,Y ). For each α > 0, the operators

A∗A + αI ∈ L(X ) and AA∗ + αI ∈ L(Y )

are continuously invertible and they fulfill∥∥(A∗A + αI )−1
∥∥
L(X )

≤ 1

α
,
∥∥(AA∗ + αI )−1

∥∥
L(Y )

≤ 1

α
.
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Minimizer of Tikhonov Functional

Theorem 2.2. Let A ∈ L(X ,Y ). xδα := (A∗A + αI )−1A∗y δ is the
unique minimizer of the Tikhonov functional

Jα(x) :=
∥∥∥Ax − y δ

∥∥∥2
Y

+ α ‖x‖2X
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An auxiliary result

Theorem 2.3. Let A ∈ L(X ,Y ) be injective.

(a) R(A∗A) is dense in X

(b) If a sequence (xk)k∈N ⊂ X fulfills

A∗Axk → A∗Ax and ‖xk‖X ≤ ‖x‖X

then xk → x .
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Convergence of Tikhonov regularization

Theorem 2.4. Let

I A ∈ L(X ,Y ) be injective (with a possibly unbounded inverse),

I Ax̂ = ŷ

I (y δ)δ>0 ⊆ Y be noisy measurements with
∥∥y δ − ŷ

∥∥
Y
≤ δ.

If we choose the regularization parameter so that

α(δ)→ 0 and
δ2

α(δ)
→ 0,

then
(A∗A + αI )−1A∗y δ → x̂ for δ → 0.
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Image deblurring

x̂ ŷ = Ax̂ y δ



A−1y δ

(A∗A + δI )−1A∗y δ
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Computerized tomography

x̂ ŷ = Ax̂ y δ



A−1y δ

(A∗A + δI )−1A∗y δ
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Conclusions and remarks
Conclusions

I For ill-posed inverse problems, the best data-fit solutions
generally do not converge against the true solution.

I The regularized solutions do converge against the true solution.

More sophisticated parameter choice rule

I Discrepancy principle: Choose α such that
∥∥Axδα − y δ

∥∥ ≈ δ
Strategies for non-linear inverse problems F (x) = y :

I First linearize, then regularize.

I First regularize, then linearize.

A-priori information

I Regularization can be used to incorporate a-priori knowledge
(promote sparsity or sharp edges, include stochastic priors, etc.)
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