

1

Inverse parameter identification problems

Bastian von Harrach harrach@math.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

SimTech Colloquium Summer Term 2013, April 30, 2013.

Contents

- Parameter identification problems in diffuse optical tomography (DOT)
- Linearized reconstruction algorithms in electrical impedance tomography (EIT)

Parameter identification problems

in diffuse optical tomography (DOT)

Diffuse optical tomography

Diffuse optical tomography (DOT):

- Transilluminate biological tissue with visible/near-infrared light
- Goal: Reconstruct spatial image of interior physical properties. Relevant quantities (in diffusive regime):
 - Scattering
 - Absorption
- Applications:
 - Breast cancer detection
 - Bedside-imaging of neonatal brain function

Diffuse optical tomography

Figure 1 from Gibson, Hebden and Arridge (Phys. Med. Biol. 50, R1–R43, 2005) Imaging Diagnostic System Inc.'s computed tomography laser breast imaging system. See www.imds.com for more details.

University of Stuttgart Germany

Mathematical Model

• General Forward Model:

Photon transport models (Boltzmann transport equation) cf., e.g., Bal, Inverse Problems 25, 053001 (48pp), 2009.

- For highly scattering media:
 - ► DC diffusion approximation for photon density *u*:

 $abla \cdot (a
abla u) + cu = 0$ in $B \subset \mathbb{R}^n$,

- $\begin{array}{lll} u: & B \to \mathbb{R}: & \text{photon density} \\ a: & B \to \mathbb{R}: & \text{diffusion/scattering coefficient} \\ c: & B \to \mathbb{R}: & \text{absorption coefficient} \end{array}$
- Boundary measurements (idealized):

Neumann and Dirichlet data $u|_S$, $a\partial_
u u|_S$ on $S\subseteq \partial B$.

Remaining boundary assumed to be insulated, $a\partial_{\nu}u|_{\partial B\setminus\overline{S}}=0.$

Forward & inverse problem

DC diffuse optical tomography:

$$-\nabla \cdot (a\nabla u) + cu = 0$$
 in $B \subset \mathbb{R}^n, n \ge 2$,

B bounded with smooth bndry, $S \subseteq \partial B$ open part, $a, c \in L^{\infty}_{+}(B)$.

 $\blacktriangleright \ \forall g \in L^2(S) \ \exists ! \ \text{sol.} \ u \in H^1(B) : \ a\partial_{\nu}u|_{\partial B} = \begin{cases} g & \text{on } S, \\ 0 & \text{on } B \setminus \overline{S}. \end{cases}$

(Local) Neumann-to-Dirichlet map

$$\Lambda_{a,c}: g \mapsto u|_S, \quad L^2(S) \to L^2(S)$$

is linear, compact and self-adjoint.

Inverse Problem: Can we reconstruct *a* and *c* from $\Lambda_{a,c}$?

Non-uniqueness

DC diffuse optical tomography:

$$-\nabla\cdot(a\nabla u)+cu=0$$

Arridge/Lionheart (1998 Opt. Lett. 23 882–4):

•
$$v := \sqrt{au}$$
 solves

$$-\Delta v + \eta v = 0,$$
 with $\eta = rac{\Delta \sqrt{a}}{\sqrt{a}} + rac{c}{a}$

►
$$a = 1$$
 around $S \quad \rightsquigarrow \quad (u|_S, a\partial_\nu u|_S) = (v|_S, \partial_\nu v|_S).$

 $\rightsquigarrow \Lambda_{a,c}$ only depends on effective absorption $\eta = \eta(a, c)$.

Absorption and scattering effects cannot be distinguished.

(Note: Argument requires smooth scattering coefficient *a*).

Experimental results

Theory: Absorption and scattering effects cannot be distinguished.

Practice:

Successful separate reconstructions of absorption and scattering (from phantom experiment using dc diffusion model!) Pei et al. (2001), Jiang et al. (2002), Schmitz et al. (2002), Xu et al. (2002)

 \rightsquigarrow Practice contradicts theory!

Pei et al. (2001): "As a matter of established methodological principle (...) empirical facts have the right-of-way; if a theoretical derivation yields a conclusion that is at odds with experimental results, the reconciliatory burden falls on the theorist, not on the experimentalist. "

New uniqueness result

Theorem (H., Inverse Problems 2009)

- ▶ $a_1, a_2 \in L^\infty_+(B)$ piecewise constant
- $c_1, c_2 \in L^\infty_+(B)$ piecewise analytic

If
$$\Lambda_{a_1,c_1} = \Lambda_{a_2,c_2}$$
 then $a_1 = a_2$ and $c_1 = c_2$.

- Piecewise constantness seems fulfilled for phantom experiments.
- → Result reconciles theory with practice.
- Measurements contain more than just the effective absorption!

Next slides: Idea of the proof using monotony and loc. potentials.

Monotony result

Lemma

Let $a_1, a_2, c_1, c_2 \in L^{\infty}_+(B)$. Then for all $g \in L^2(S)$,

$$\begin{split} \int_{B} \left((a_{2} - a_{1}) |\nabla u_{1}|^{2} + (c_{2} - c_{1}) |u_{1}|^{2} \right) \, \mathrm{d}x \\ & \geq \langle (\Lambda_{a_{1},c_{1}} - \Lambda_{a_{2},c_{2}})g,g \rangle \\ & \geq \int_{B} \left((a_{2} - a_{1}) |\nabla u_{2}|^{2} + (c_{2} - c_{1}) |u_{2}|^{2} \right) \, \mathrm{d}x, \end{split}$$

 $u_1, u_2 \in H^1(B)$: solutions for (a_1, c_1) , resp., (a_2, c_2) .

Can we control $|u_j|^2$ and $|\nabla u_j|^2$?

Localized potentials

Lemma There exist solutions u with

Localized potentials

Lemma There exist solutions u with

Proof of uniqueness

Monotony

$$\begin{split} \int_{B} \left((a_{2} - a_{1}) |\nabla u_{1}|^{2} + (c_{2} - c_{1}) |u_{1}|^{2} \right) \, \mathrm{d}x \\ & \geq \langle (\Lambda_{a_{1}, c_{1}} - \Lambda_{a_{2}, c_{2}}) g, g \rangle \\ & \geq \int_{B} \left((a_{2} - a_{1}) |\nabla u_{2}|^{2} + (c_{2} - c_{1}) |u_{2}|^{2} \right) \, \mathrm{d}x, \end{split}$$

Proof of the uniqueness result (very sketchy ...)

Start with region next to S

- Use loc. pot. with $|
 abla u|^2
 ightarrow \infty$ in that region $\rightsquigarrow a_1 = a_2$
- ▶ Then use loc. pot. with $|u|^2 \to \infty$ in that region $\rightsquigarrow c_1 = c_2$
- Repeat over all regions.

Arridge/Lionheart (1998): Non-uniqueness for general smooth (a, c).

University of Stuttgart

► H. (2009): Uniqueness for piecew. constant *a*, piecew. analytic *c*.

What information about (a, c) does $\Lambda_{a,c}$ really contain?

Formally(!),
$$\Lambda_{a,c}$$
 can only determine $\eta = \frac{\Delta\sqrt{a}}{\sqrt{a}} + \frac{c}{a}$.

Jumps in *a* or $\nabla a \quad \rightsquigarrow \quad$ distributional singularities in $\Delta \sqrt{a}$.

Bold guess: Maybe $\Lambda_{a,c}$ determines

- η where *a* and *c* are smooth,
- jumps in a and ∇a .

(However, note that $\Delta\sqrt{a}/\sqrt{a}$ is not well-defined for non-smooth $a\dots$)

Exact characterization

Theorem (H., Inverse Probl. Imaging 2012)

Let $a_1, a_2, c_1, c_2 \in L^\infty_+(B)$ piecewise analytic on joint partition

$$B = O_1 \cup \ldots \cup O_J \cup \Gamma, \qquad \partial O_1 \cup \ldots \cup \partial O_J = \partial B \cup \Gamma.$$

University of Stuttgart

Germany

Then,
$$\Lambda_{a_1,c_1} = \Lambda_{a_2,c_2}$$
 if and only if
(a) $a_1|_S = a_2|_S$, and $\partial_{\nu}a_1|_S = \partial_{\nu}a_2|_S$ on S ,
(b) $\frac{\partial_{\nu}a_1}{a_1}|_{\partial B\setminus\overline{S}} = \frac{\partial_{\nu}a_2}{a_2}|_{\partial B\setminus\overline{S}}$ on $\partial B\setminus\overline{S}$,
(c) $\eta_1 := \frac{\Delta\sqrt{a_1}}{\sqrt{a_1}} + \frac{c_1}{a_1} = \frac{\Delta\sqrt{a_2}}{\sqrt{a_2}} + \frac{c_2}{a_2} =: \eta_2$ on $B\setminus\Gamma$,
(d) $\frac{a_1^+|_{\Gamma}}{a_1^-|_{\Gamma}} = \frac{a_2^+|_{\Gamma}}{a_2^-|_{\Gamma}}$, and $\frac{[\partial_{\nu}a_2]_{\Gamma}}{a_2^-|_{\Gamma}} = \frac{[\partial_{\nu}a_1]_{\Gamma}}{a_1^-|_{\Gamma}}$ on Γ .

Linearized reconstruction algorithms

in electrical impedance tomography (EIT)

Electrical impedance tomography (EIT):

• Apply currents $\sigma \partial_{\nu} u |_{\partial B}$ (Neumann boundary data)

 \rightsquigarrow Electric potential *u* solves

$$\nabla \cdot (\sigma \nabla u) = 0 \quad \text{in } B$$

• Measure voltages $u|_{\partial B}$ (Dirichlet boundary data)

Current-Voltage-Measurements \rightsquigarrow Neumann-to-Dirichlet map $\Lambda(\sigma)$

Inverse problem

Non-linear forward operator of EIT

$$\Lambda: \ \sigma \mapsto \Lambda(\sigma), \quad L^{\infty}_{+}(B) \to \mathcal{L}(L^{2}_{\diamond}(\partial B))$$

Inverse problem of EIT: $\Lambda(\sigma) \mapsto \sigma$?

Localized potentials \rightsquigarrow Uniqueness for piecew. analytic conductivities already known: Druskin (1982+85), Kohn/Vogelius (1984+85)

Linearization

Generic approach: Linearization

$$\Lambda(\sigma) - \Lambda(\sigma_0) \approx \Lambda'(\sigma_0)(\sigma - \sigma_0)$$

 $\sigma_0:$ known reference conductivity / initial guess / \ldots

 $\Lambda'(\sigma_0)$: Fréchet-Derivative / sensitivity matrix.

$$\Lambda'(\sigma_0): L^{\infty}_+(B) \to \mathcal{L}(L^2_{\diamond}(\partial B)).$$

 \rightsquigarrow Solve linearized equation for difference $\sigma - \sigma_0$.

Often: supp $(\sigma - \sigma_0) \subset B$ compact. ("shape " / "inclusion")

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009) Solve $\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- Multiple possibilities to measure residual norm and to regularize.
- ► No rigorous theory for single linearization step.
- Almost no theory for Newton iteration:
 - Dobson (1992): (Local) convergence for regularized EIT equation.
 - Lechleiter/Rieder(2008): (Local) convergence for discretized setting.
 - No (local) convergence theory for non-discretized case!

Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009) Solve $\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- Seemingly, no rigorous results possible for single lineariz. step.
- Seemingly, only justifiable for small $\sigma \sigma_0$ (local results).

Here: Rigorous and global(!) result about the linearization error.

Exact Linearization

Theorem (H./Seo, SIAM J. Math. Anal. 2010)

Let κ , σ , σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

$$\operatorname{supp}_{\partial B} \kappa = \operatorname{supp}_{\partial B} (\sigma - \sigma_0)$$

 $\operatorname{supp}_{\partial B}$: outer support (= support, if support is compact and has conn. complement)

- <u>Exact solution</u> of lin. equation yields correct (outer) shape.
- No assumptions on $\sigma \sigma_0!$
- → Linearization error does not lead to shape errors.

Proof: Combination of monotony and localized potentials.

Proof

- Exact linearization: $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) \Lambda(\sigma_0)$
- ▶ Monotony: For all "reference solutions" *u*₀:

$$\int_{B} (\sigma - \sigma_{0}) |\nabla u_{0}|^{2} dx$$

$$\geq \underbrace{\langle g, (\Lambda(\sigma) - \Lambda(\sigma_{0})) g \rangle}_{= \int_{B} \kappa |\nabla u_{0}|^{2} dx} \geq \int_{B} \frac{\sigma_{0}}{\sigma} (\sigma - \sigma_{0}) |\nabla u_{0}|^{2} dx.$$

► Use localized potentials to control $|\nabla u_0|^2$ \Rightarrow supp_{$\partial\Omega$} κ = supp_{$\partial\Omega$}($\sigma - \sigma_0$)

Interpretation

- σ_0 : reference conductivity
- σ : true conductivity
 - Current paths depend on unknown conductivity σ (Non-linearity of EIT)
 - Linearizing EIT around ref. conductivity σ₀ corresponds to assuming that currents take the same paths as in a ref. body.
 - Paths may differ considerably when $\sigma \sigma_0$ is large.
 - However, taking the (wrong) reference paths for reconstruction still yields the correct shape information!

Practical issues: Theorem requires exact sol. of linearized equation

Does an approximate solution of the linearized equation show approximately correct shapes?

University of Stuttgart

Germany

H./Seo/Woo (IEEE Trans. Med. Imaging 2010): Heuristic combination of linearization and localized potentials for fdEIT.

Planar EIT

Ts/Lee/Seo/H./Kim (submitted): Partial inversion plus linearization

Lung monitoring - real human data

BMBF-project on regularizing EIT in the medical and geophysical sciences.

Conclusion

- Novel tomography techniques lead to mathematical parameter identification problems.
- Uniqueness questions may have non-trivial answers.
 In diffuse optical tomography:
 - Effective absorption plus jumps in diffusion coefficient (and its derivative) can be reconstructed simultaneously.
 - Uniqueness for piecewise constant coefficients, but not for general smooth coefficients
- ► Non-linearity is main challenge for stable/convergent algos.
 - Shape information is not affected by linearization errors.
 - Stable shape reconstruction is possible.
- Close interplay between uniqueness arguments and convergent reconstruction algorithms.