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Motivation

Inverse Electromagnetics & Eddy currents
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Inverse Electromagnetics

Inverse Electromagnetics:

» Generate EM field

(drive excitation current through coil)
» Measure EM field

(induced voltages in meas. coil)

» Gain information from measurements

Applications:

» Metal detection (buried conductor)
» Non-destructive testing
(crack in metal, metal in concrete)
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v Maxwell’s equations

Classical Electromagnetics: Maxwell's equations

curl H = €0.E + 0E + J in R3]0, T
curl E = —pdH in R3]0, T
E(x,t): Electric field e(x):  Permittivity
H(x,t): Magnetic field wu(x):  Permeability
J(x,t): Excitation current o(x): Conductivity

Knowing J, o, 11,€ + init. cond. determines E and H.

w
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e Eddy currents

Maxwell’s equations

curl H= ¢0.E +0E + J in R3x]0, T
curl E = —poH in R3x]0, T

Eddy current approximation: Neglect displacement currents €0, E

» Justified for low-frequency excitations
(Alonso 1999, Ammari/Buffa/Nédélec 2000)

1
~ 0¢(cE) + curl (; curl E) = —9:J inR3x]0, T|
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ima \\here's Eddy?
» o = 0: (Quasi-)Magnetostatics

curl (1 curl E) = —0+J
L

Excitation 9;J instantly generates magn. field icurl E=—-0:H.

» o # 0: Eddy currents

Ot(cE) + curl (% curl E) = —0¢J

0¢J generates changing magn. field 4 currents inside conductor

Induced currents oppose what created them (Lenz law)
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’ Parabolic-elliptic equations

Ot(cE) + curl (% curl E) = —0;J in R3><]0, T[

» parabolic inside conductor § = supp(o)

» elliptic outside conductor

Scalar example: (ou)s = Uy, u(+,0) =0, ux(—2,-) = ux(2,-) = 1.
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The direct problem

Unified variational formulation
for the parabolic-elliptic eddy current problem
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’ Standard approach

0¢(cE) + curl (% curl E) = -0 inR3>x]0, T[

Standard approach: Decouple elliptic and parabolic part
(e.g. Bossavit 1999, Acevedo/Meddahi/Rodriguez 2009)

Find (ERa\Q, EQ) S HRa\Q x Hq s.t.
» Eq solves parabolic equation + init. cond.
> Egs\q solves elliptic equation
> interface conditions are satisfied

Problem: Theory (solution spaces, coercivity constants, etc.)
depends on Q = supp o and on lower bounds of o|q.
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wa Unified approach?
Parabolic-elliptic eddy current equation

Ot(cE) + curl (% curl E) =—0;J in R3><]0, T[

Inverse problem: Find o (or Q = supp o) from measurements of E

> requires unified solution theory

Test for unified theory: Can we linearize E w.r.t. o7

How does the solution of an elliptic equation change
if the equation becomes a little bit parabolic?

(For scalar analogue: Frithauf/H./Scherzer 2007, H. 2007)
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Rigorous formulation

Rigorous formulation: Let u € L, 0 € L*°, ¢ >0,

Je € L2(0, T, W(curl))) with divJ; =0
Ey € [2(R3)? with div(cEy) = 0.

For E € L2(0, T, W(curl)) the eddy current equations
Ot(cE) + curl (; curl E) —J; in R3><]0, T[

E(x,0) = vo(x)E(x) inR3

are well-defined and (if solvable) uniquely determine curl E, VoE.
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e Natural variational formulation

Natural unified variational formulation (Ey = 0 for simplicity):

Find E € L2(0, T, W(curl)) that solves

T 1 T
/ / (aE-@tCD——curIE-curI(D) :/ Ji - .
0 JR3 K 0 JR3

for all smooth ® with ®(-, T) = 0.

> equivalent to eddy current equation

» not coercive, does not yield existence results
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Gauged formulation

Gauged unified variational formulation (Eyg = 0 for simplicity)

Find divergence-free E € L2(0, T, W(curl)) that solves

T 1 T
/ / (0E~8t¢——cur|E-cur|¢):/ / Ji - .
0o JRr3 K 0o Jr3

for all smooth divergence-free ® with ®(-, T) = 0.

> coercive, yields existence and continuity results

> not equivalent to eddy current equation
(o # const. ~ divoE # odiv E)

» does not determine true solution up to gauge (curl-free) field
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’ Coercive unified formulation

How to obtain coercive + equivalent unified formulation?

» Ansatz E = A+ Vi with divergence-free A.
(almost the standard (A, p)-formulation with Coulomb gauge)

» Consider Vo = V4 as function of A by solving
divoVyps = —divoA.
(~ diveE =0).

» Obtain coercive formulation for A
(Lions-Lax-Milgram Theorem ~~ Solvability and continuity results)

> A determines E
(more precisely: curl E and /o E)
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Unified variational formulation

Unified variational formulation (Arnold/H., SIAP, 2012)

Find divergence-free A € L2(0, T, W(curl)) that solves

T 1 T
/ / (J(A+V<,0A)'8t¢——curIA-curICD) :/ Ji - 0.
0 JR3 K 0 JR3

for all smooth divergence-free ® with ®(-, T) = 0.

> coercive, uniquely solvable
» E := A+ Vg is one solution of the eddy current equation

~ curl E, \/oE depend continuously on J; (uniformly w.r.t. o)
(for all solutions of the eddy current equation)
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Solved and open problems

Unified variational formulation
> allows to study inverse problems w.r.t. ¢

> allows to rigorously linearize E w.r.t. o around og =0
(elliptic equation becoming a little bit parabolic in some region...)

Open problem:

» Theory requires some regularity of Q = suppo and o € LL(Q)
in order to determine ¢ from A.

» Solution theory for
divoVyp = —divoA
for general o0 € L*°, 0 > 07
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The inverse problem
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Detecting conductors:

» Apply surface currents Jon S
(divergence-free, no electrostatic effects)

» Measure electric field E on S

S (tangential component, up to grad. fields)
g » Measurement operator
~a No:Je—vE:=WANE|s)Av

Locate 2 = suppo in
1 . o3
Ot(cE) +curl | —curl E ) = —J; in R*x]0, T|
,u
(4 zero IC) from all possible surface currents and measured values.
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‘ Measurement operator

T12:={ue 3(5)|u-v =0}

3
SCRY T2 —fueT?| fou- V=0 }
¥V smooth

Measurement operator
Ao L3(0, T, TLZ) = L2(0, T, TLZ),  Jp > 7,E,

where E solves eddy current eq. with [v x curl E]s = J; on S.

Remark

T12 = T12/TI2" ~ E not unique, but A, well-defined.
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’ Sampling methods

Non-iterative shape detection methods:
» Linear Sampling Method (Colton/Kirsch 1996)

» characterizes subset of scatterer by range test
» allows fast numerical implementation

» Factorization Method (Kirsch 1998)

» characterizes scatterer by range test
» vyields uniqueness under definiteness assumptions
» allows fast numerical implementation

» Beyond LSM/FM?
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e Sampling ingredients

Ingredients for LSM and FM:
» Reference measurements: A := A, — Ag,
No:Je— ~v-F, F solves curlcurl F = —J; in R3x]0, Tl
» Time-integration: Consider /A,
with 1 E(,,-) = [} E(-,t) dt
» Singular test functions

x e R3\ {z}

d
G = | ——M
z.d(X) = cur At|x — z|’
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m LSM and FM

Arnold/H. (submitted):
For every z below S, z ¢ Q and direction d € R3.

Theorem (LSM)
VG a €ER(IN) = z€Q

Theorem(FM)
If, additionally, sup u|lg < 1 (diamagnetic scatterer)

% Gg € RUN+NP?) & zeQ
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ma Beyond LSM/FM?

v

Beyond LSM/FM?: Monotony methods
For EIT: A, NtD-operator for conductivity o = 1+ xp

D = Union of all balls B where A14,, <A, (H./Ullrich)
(under the assumptions of the FM)

v

v

stable test criterion (no infinity tests)

v

allows fast numerical implementation

v

allows extensions to indefinite cases
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Conclusions

Inverse transient eddy current problems
> require unified parabolic-elliptic theory
» can be approached by sampling methods (LSM/FM)

Open problems
» Solution theory for
divoVyp = —divoA
for general o0 € L*°, ¢ > 07

» Monotony based methods beyond EIT?
Parabolic-elliptic problems? Inverse Scattering?
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